kaldi解码及特征提取详解


1. 注意事项

  • 首先要训练好模型,用到3个文件,分别是:
    • final.mdl(训练模型得到的模型文件)
    • final.mat(用来特征转换)
    • HCLG.fst(fst文件)
  • 此外要提供待解码音频文件或路径.scp文件:
    • wav.scp(音频路径.scp文件)

2. 流程图:

st=>start: 开始
op1=>operation: compute-mfcc-feats
op2=>operation: copy-feats
op3=>operation: compute-cmvn-stats
op4=>operation: apply-cmvn
op5=>operation: splice-feats
op6=>operation: transform-feats
op7=>operation: nnet-latgen-faster
st->op1->op2->op3->op4->op5->op6->op7

流程每一步意义如下:

  1. 使用compute-mfcc-feats提取特征,生成对应的特征文件feats.ark
  2. 使用copy-feats来拷贝特征文件,并创建特征的scp文件,生成feat.scp feat.ark
  3. 使用compute-cmvn-stats计算CMVN归一化,得到cmvn.scp cmvn.ark
  4. 使用apply-cmvn得到了applycmvn.ark文件;
  5. 使用splice-feats来继续变换特征 ,拼接相邻帧的特征;
  6. 使用transform-feats来进行特征转换,为了解码调用 ;
  7. 最后通过得到的transform.ark进行解码的操作,得到解码后的lattice文件 。

3. 具体流程指令:

  1. 首先列出具体文件,这里我就按照自己的文件给出了,如果用别的,改相应文件就行了

    2. wav.scp(里面是保存了wav的绝对路径)

    3. final.mdl(训练模型得到的模型文件)

    4. final.mat(用来特征转换)

    5. HCLG.fst(fst文件,用于解码)
  2. 使用compute-mfcc-feats生成对应的特征文件feats.ark:

    compute-mfcc-feats --use-energy=false scp:wav.scp ark:feats.ark
  3. 使用copy-feats来拷贝特征文件,并创建特征的scp文件,生成feat.scp feat.ark

    copy-feats ark:feats.ark ark,scp:feat.ark,feat.scp
  4. 使用compute-cmvn-stats计算CMVN归一化,得到cmvn.scp cmvn.ark

    compute-cmvn-stats scp:feat.scp ark,scp:cmvn.ark,cmvn.scp
  5. 使用apply-cmvn,得到了applycmvn.ark文件

    apply-cmvn scp:cmvn.scp scp:feat.scp ark:applycmvn.ark
  6. 使用splice-feats来继续变换特征

    splice-feats --left-context=3 --right-context=3 ark:applycmvn.ark ark:splice.ark
  7. 使用transform来进行特征转换,为了解码调用

    transform-feats final.mat ark:splice.ark ark:transform.ark
  8. 最后通过得到的transform.ark进行解码的操作,得到一个晶格文件

    nnet-latgen-faster [options] <nnet-in> <fst-in|fsts-rspecifier> <features-rspecifier> <lattice-wspecifier>

版权声明:转载请注明出处,谢谢

上一篇:Emmet语法预览


下一篇:python的函数(三)