LeetCode 每日一题 1111. 有效括号的嵌套深度
2020.4.1 难度 中等
有效括号字符串 定义:对于每个左括号,都能找到与之对应的右括号,反之亦然。详情参见题末「有效括号字符串」部分。
嵌套深度 depth 定义:即有效括号字符串嵌套的层数,depth(A) 表示有效括号字符串 A 的嵌套深度。详情参见题末「嵌套深度」部分。
给你一个「有效括号字符串」 seq,请你将其分成两个不相交的有效括号字符串,A 和 B,并使这两个字符串的深度最小。
不相交:每个 seq[i] 只能分给 A 和 B 二者中的一个,不能既属于 A 也属于 B 。
A 或 B 中的元素在原字符串中可以不连续。
A.length + B.length = seq.length
max(depth(A), depth(B)) 的可能取值最小。
划分方案用一个长度为 seq.length 的答案数组 answer 表示,编码规则如下:
answer[i] = 0,seq[i] 分给 A 。
answer[i] = 1,seq[i] 分给 B 。
如果存在多个满足要求的答案,只需返回其中任意 一个 即可。
示例 1:
输入:seq = “(()())”
输出:[0,1,1,1,1,0]
示例 2:
输入:seq = “()(())()”
输出:[0,0,0,1,1,0,1,1]
提示:
1 <= text.size <= 10000
有效括号字符串:
仅由 “(” 和 “)” 构成的字符串,对于每个左括号,都能找到与之对应的右括号,反之亦然。
下述几种情况同样属于有效括号字符串:
- 空字符串
- 连接,可以记作 AB(A 与 B 连接),其中 A 和 B 都是有效括号字符串
- 嵌套,可以记作 (A),其中 A 是有效括号字符串
嵌套深度:
类似地,我们可以定义任意有效括号字符串 s 的 嵌套深度 depth(S):
- s 为空时,depth("") = 0
- s 为 A 与 B 连接时,depth(A + B) = max(depth(A), depth(B)),其中 A 和 B 都是有效括号字符串
- s 为嵌套情况,depth("(" + A + “)”) = 1 + depth(A),其中 A 是有效括号字符串
例如:"","()()",和 “()(()())” 都是有效括号字符串,嵌套深度分别为 0,1,2,而 “)(” 和 “(()” 都不是有效括号字符串。
题解
这里让我们将一个有效括号的串分为2个,并且要保证嵌套深度最小,那我们我们只需要知道嵌套的深度,然后把他分别的分给两个子串即可保证他的深度最小。这里的答案不唯一,只要深度最小即可。我们这里连栈都不需要实际维护,因为我们只需要知道他的深度。
class Solution {
public:
vector<int> maxDepthAfterSplit(string seq) {
vector<int> ans;
int depth = 0;
int length = seq.length();
for(int i = 0;i < length; i++){
if(seq[i] == ')' && depth >= 1){
depth--;
}
ans.push_back(depth % 2);
if(seq[i] == '('){
depth++;
}
}
return ans;
}
};