题目描述
Due to recent rains, water has pooled in various places in Farmer John‘s field, which is represented by a rectangle of N x M (1 <= N <= 100; 1 <= M <= 100) squares. Each square contains either water (‘W‘) or dry land (‘.‘). Farmer John would like to figure out how many ponds have formed in his field. A pond is a connected set of squares with water in them, where a square is considered adjacent to all eight of its neighbors. Given a diagram of Farmer John‘s field, determine how many ponds he has.
由于近期的降雨,雨水汇集在农民约翰的田地不同的地方。我们用一个NxM(1<=N<=100;1<=M<=100)网格图表示。每个网格中有水(‘W‘) 或是旱地(‘.‘)。一个网格与其周围的八个网格相连,而一组相连的网格视为一个水坑。约翰想弄清楚他的田地已经形成了多少水坑。给出约翰田地的示意图,确定当中有多少水坑。
输入输出格式
输入格式:Line 1: Two space-separated integers: N and M * Lines 2..N+1: M characters per line representing one row of Farmer John‘s field. Each character is either ‘W‘ or ‘.‘. The characters do not have spaces between them.
第1行:两个空格隔开的整数:N 和 M 第2行到第N+1行:每行M个字符,每个字符是‘W‘或‘.‘,它们表示网格图中的一排。字符之间没有空格。
输出格式:Line 1: The number of ponds in Farmer John‘s field.
一行:水坑的数量
输入输出样例
10 12 W........WW. .WWW.....WWW ....WW...WW. .........WW. .........W.. ..W......W.. .W.W.....WW. W.W.W.....W. .W.W......W. ..W.......W.
3
说明
OUTPUT DETAILS: There are three ponds: one in the upper left, one in the lower left, and one along the right side.
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 1000005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-4 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == ‘-‘) f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int n, m; char ch[200][200]; int tot; int a[200][200]; bool vis[200][200]; int dx[] = { 1,1,1,-1,-1,-1,0,0 }; int dy[] = { 0,1,-1,0,1,-1,1,-1 }; void dfs(int x, int y,int id) { vis[x][y] = id; for (int i = 0; i < 8; i++) { int nx = x + dx[i]; int ny = y + dy[i]; if (!vis[nx][ny] && a[nx][ny] == 1) { dfs(nx, ny, id); } } } int main() { //ios::sync_with_stdio(0); rdint(n); rdint(m); for (int i = 1; i <= n; i++)scanf("%s", ch[i] + 1); for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) if (ch[i][j] == ‘W‘)a[i][j] = 1; for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { if (a[i][j] == 1 && !vis[i][j]) { dfs(i, j, ++tot); } } } cout << tot << endl; return 0; }