--方法1: 直接使用数据库提供的SQL语句
---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 LIMIT M,N
---适应场景: 适用于数据量较少的情况(元组百/千级)
---原因/缺点: 全表扫描,速度会很慢 且 有的数据库结果集返回不稳定(如某次返回1,2,3,另外的一次返回2,1,3). Limit限制的是从结果集的M位置处取出N条输出,其余抛弃.
---方法2: 建立主键或唯一索引, 利用索引(假设每页10条)
---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 WHERE id_pk > (pageNum*10) LIMIT M
---适应场景: 适用于数据量多的情况(元组数上万)
---原因: 索引扫描,速度会很快. 有朋友提出: 因为数据查询出来并不是按照pk_id排序的,所以会有漏掉数据的情况,只能方法3
---方法3: 基于索引再排序
---语句样式: MySQL中,可用如下方法: SELECT * FROM 表名称 WHERE id_pk > (pageNum*10) ORDER BY id_pk ASC LIMIT M
---适应场景: 适用于数据量多的情况(元组数上万). 最好ORDER BY后的列对象是主键或唯一所以,使得ORDERBY操作能利用索引被消除但结果集是稳定的(稳定的含义,参见方法1)
---原因: 索引扫描,速度会很快. 但MySQL的排序操作,只有ASC没有DESC(DESC是假的,未来会做真正的DESC,期待...).
---方法4: 基于索引使用prepare(第一个问号表示pageNum,第二个?表示每页元组数)
---语句样式: MySQL中,可用如下方法: PREPARE stmt_name FROM SELECT * FROM 表名称 WHERE id_pk > (?* ?) ORDER BY id_pk ASC LIMIT M
---适应场景: 大数据量
---原因: 索引扫描,速度会很快. prepare语句又比一般的查询语句快一点。
---方法5: 存储过程类(最好融合上述方法4)
---语句样式: 不再给出
---适应场景: 大数据量. 作者推荐的方法
---原因: 把操作封装在服务器,相对更快一些。
本文出自 “Linux运维” 博客,请务必保留此出处http://2853725.blog.51cto.com/2843725/1546287