思路:斜率优化\(DP\)
提交:\(1\)次
题解:
转移方程:\(f[i]=\max(f[j]+A*(s[i]-s[j])^2+B*(s[i]-s[j])+C) 写成可以斜率优化的式子:\)f[i]+As[j]^2-Bs[j]+C=2As[i]s[j]+f[i]-As[j]^2-B*s[i]$
然后求\(f[i]\)最大值,于是维护上凸包;,横坐标单调增,斜率单调减,所以直接上单调队列即可。
#include<cstdio>
#include<iostream>
#define R register int
#define ll long long
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0;
register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
do x=x*10+(ch^48); while(isdigit(ch=getchar())); return x*=f;
} const int N=1e6+10;
int n,A,B,C,h=0,t=0,q[N];
ll s[N],f[N];
inline double X(int i) {return s[i];}
inline double Y(int i) {return f[i]+A*s[i]*s[i]-B*s[i]+C;}
inline double K(int i,int j) {return (Y(i)-Y(j))/(X(i)-X(j));}
inline void main() {
g(n),g(A),g(B),g(C); for(R i=1;i<=n;++i) g(s[i]),s[i]+=s[i-1];
for(R i=1;i<=n;++i) {
while(h<t&&K(q[h],q[h+1])>=2.0*A*s[i]) ++h;
f[i]=f[q[h]]+A*(s[i]-s[q[h]])*(s[i]-s[q[h]])+B*(s[i]-s[q[h]])+C;
while(h<t&&K(q[t],i)>=K(q[t-1],i)) --t; q[++t]=i;
} printf("%lld\n",f[n]);
}
} signed main() {Luitaryi::main(); return 0;}
2019.08.16
84