Solution -「ABC 209F」Deforestation

Description

??Link.

??有 \(n\) 棵树,每棵的高度为 \(a(i)\),看到一棵树对答案的贡献为 \(a(i-1)+a(i)+a(i+1)\)(未定义范围为 \(0\)),求使得答案最小的砍树顺序的数量。

Solution

??口胡瑇师。不过这个 F 比上次的 Lagrange 插值阳间多了。

??考虑每一个元素的贡献次数。发现这个次数的区间是 \([1,3]\),对应树 \(i\) 在树 \(i-1/i+1\) 之前 / 之后砍倒的情况。

??那么我们直接贪心,使得答案最小的砍树顺序一定是:

  • \(a(i)<a(i+1)\) 先砍 \(i+1\),再砍 \(i\)
  • otherwise:先砍 \(i\),再砍 \(i+1\)

??然后就可以 DP 仂。设 \(f(i,j)\) 为树 \(i\) 在是第 \(j\) 个被砍的排列数。

  • \(a(i)=a(i+1)\)\(f(i,j)=\sum_{k=1}^{i}f(i-1,k)\)
  • \(a(i)<a(i+1)\)\(f(i,j)=\sum_{k=j}^{i}f(i-1,k)\)
  • \(a(i)>a(i+1)\)\(f(i,j)=\sum_{k=1}^{j}f(i-1,k)\)

??使用前缀和优化。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline ll read() {
	ll x=0,f=0;
	char ch=getchar();
	while(ch<‘0‘||ch>‘9‘) f|=(ch==‘-‘),ch=getchar();
	while(ch>=‘0‘&&ch<=‘9‘) x=x*10+(ch&15),ch=getchar();
	return f?-x:x;
}
const int N=4100,MOD=1e9+7;
ll dp[N][N],sum[N],a[N];
signed main() {
	int n=read();
	for(int i=1; i<=n; ++i) a[i]=read();
	dp[1][1]=1;
	for(int i=2; i<=n; ++i) {
		for(int j=1; j<i; ++j) (sum[j]=sum[j-1]+dp[i-1][j])%=MOD;
		for(int j=1; j<=i; ++j)
			if(a[i]==a[i-1]) dp[i][j]=sum[i-1];
			else if(a[i]>a[i-1]) dp[i][j]=(sum[i-1]-sum[j-1]+MOD)%MOD;
			else dp[i][j]=sum[j-1];
	}
	ll ans=0;
	for(int i=1; i<=n; ++i) (ans+=dp[n][i])%=MOD;
	printf("%lld\n",ans);
	return 0;
}
``

Solution -「ABC 209F」Deforestation

上一篇:144. Binary Tree Preorder Traversal 二叉树先序遍历


下一篇:word排版设置后目录自动生成教程!