(Problem 29)Distinct powers

Consider all integer combinations ofabfor 2(Problem 29)Distinct powersa(Problem 29)Distinct powers5 and 2(Problem 29)Distinct powersb(Problem 29)Distinct powers5:

22=4, 23=8, 24=16, 25=32

32=9, 33=27, 34=81, 35=243

42=16, 43=64, 44=256, 45=1024

52=25, 53=125, 54=625, 55=3125

If they are then placed in numerical order, with any repeats removed, we get the following sequence of 15 distinct terms:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

How many distinct terms are in the sequence generated byabfor 2(Problem 29)Distinct powersa(Problem 29)Distinct powers100 and 2(Problem 29)Distinct powersb(Problem 29)Distinct powers100?

题目大意:

考虑 ab 在 2 (Problem 29)Distinct powers a (Problem 29)Distinct powers 5,2 (Problem 29)Distinct powers b (Problem 29)Distinct powers 5下的所有整数组合:

22=4, 23=8, 24=16, 25=32

32=9, 33=27, 34=81, 35=243

42=16, 43=64, 44=256, 45=1024

52=25, 53=125, 54=625, 55=3125

如果将这些数字排序,并去除重复的,我们得到如下15个数字的序列:

4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125

ab 在 2 (Problem 29)Distinct powers a (Problem 29)Distinct powers 100,2 (Problem 29)Distinct powers b (Problem 29)Distinct powers 100 下生成的序列中有多少个不同的项?

算法设计(方法1):

1、将ab 进行因数分解,以字符串的形式保存,eg.  285 = (4 * 7)5 = (22 * 7)= 2^10*7^5

2、用一个结构体数组保存所有的数的因数分解表达式

3、对上述结构体数组排序

4、遍历此数组,找出不相同的项的总数

//(Problem 29)Distinct powers
// Completed on Tue, 19 Nov 2013, 07:28
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include <stdio.h>
#include <string.h> const int prim[] = {, , , , , , , , , , , ,,
, , , , , , , , , , , }; struct node
{
char list[]; }num[]; int cmp(const void *a, const void *b)
{
return strcmp((*(struct node*)a).list, (*(struct node*)b).list);
} char * explain(int a, int b) /*将a^b分解因数*/
{
char s[], ch;
char *p;
p = s;
int t;
for(int i = ; i < ; i++) {
t = ;
while(a % prim[i] == ) {
if(t == ) {
sprintf(p,"%d",prim[i]);
}
a /= prim[i];
t++;
}
if(t > ) {
p = s + strlen(s);
*p++ = '^';
t = t * b;
sprintf(p,"%d",t);
p = s + strlen(s);
if(a != ) {
*p++ = '*';
} else {
break;
}
}
}
return s;
} void solve(void)
{
int i, j, k, sum;
k = ;
for(i = ; i < ; i++) {
for(j = ; j < ; j++) {
strcpy(num[k++].list, explain(i,j));
}
}
qsort(num, , sizeof(num[]),cmp);
sum = ;
for(i = ; i < ; ) {
j = i + ;
if(j >= ) break;
while(strcmp(num[i].list, num[j].list) == ) {
j++;
}
i = j;
sum ++;
}
printf("%d\n",sum);
} int main(void)
{
solve();
return ;
}

算法设计(方法2):

仔细考察数字矩阵的规律,可以发现:

能够发生重复的数字,将他们因数分解以后,得到的指数的底都是相同的,e.g. 16与64……,在2~100中,能够发生重复数字的底只有4、8、16、32、64、9、27、81、25、36、49、81、100,于是可以在底为2的时候就排除掉以4、8、16、32、64为底的重复的数字。

#include<stdio.h>
#include<stdbool.h>
#include<stdlib.h> #define N 101
#define M 601 int main(void)
{
int answer = ;
int i, j, k, l;
bool flag[M]; bool use[N] = {false}; for (i = ; i < N; i++)
{
if (!use[i])
{
int t = i; memset(flag, false, sizeof(flag)); for (j = ; j < N; j++)
{
t = t * i;
if (t >= N)
{
break;
}
use[t] = true;
} for (k = ; k < j; k++)
{
for (l = ; l < N; l++)
{
flag[k*l] = true;
}
} for (k = ; k < M; k++)
{
if(flag[k]){
answer++;
} }
}
}
printf("%d\n",answer);
return ;
}
Answer:
9183
上一篇:Linux 进程后台运行的几种方式(screen)


下一篇:Linux --- 程序后台运行的几种方法