Runtime-iOS运行时基础篇

转自:https://www.jianshu.com/p/d4b55dae9a0d  

本文主要整理了Runtime的相关知识。对于一个iOS开发者来说,掌握Runtime的重要性早已不言而喻。OC能够作为一门优秀的动态特性语言,在其背后默默工作着的就是Runtime。在网上也看过很多资料,最终我还是希望在一些关键的知识点上能够融入自己的理解,从简单的问题出发,一步一步理解和学以致用。

  Runtime-iOS运行时基础篇 iOS运行时Runtime.png

相关文章:iOS运行时Runtime应用

目录:

一、怎么理解OC是动态语言,Runtime又是什么?
二、理解消息机制的基本原理
三、与Runtime交互的三种方式
四、分析Runtime中的数据结构
五、深入理解Rutime消息发送原理
六、多继承的实现思路:Runtime
七、最后总结

一、怎么理解OC是动态语言,Runtime又是什么?

静态语言:如C语言,编译阶段就要决定调用哪个函数,如果函数未实现就会编译报错。

动态语言:如OC语言,编译阶段并不能决定真正调用哪个函数,只要函数声明过即使没有实现也不会报错。

我们常说OC是一门动态语言,就是因为它总是把一些决定性的工作从编译阶段推迟到运行时阶段。OC代码的运行不仅需要编译器,还需要运行时系统(Runtime Sytem)来执行编译后的代码。

Runtime是一套底层纯C语言API,OC代码最终都会被编译器转化为运行时代码,通过消息机制决定函数调用方式,这也是OC作为动态语言使用的基础。

二、理解消息机制的基本原理

OC的方法调用都是类似[receiver selector]的形式,其实每次都是一个运行时消息发送过程。

第一步:编译阶段
[receiver selector]方法被编译器转化,分为两种情况:
1.不带参数的方法被编译为:objc_msgSend(receiver,selector)
2.带参数的方法被编译为:objc_msgSend(recevier,selector,org1,org2,…)

第二步:运行时阶段
消息接收者recever寻找对应的selector,也分为两种情况:
1.接收者能找到对应的selector,直接执行接收receiver对象的selector方法。
2.接收者找不到对应的selector,消息被转发或者临时向接收者添加这个selector对应的实现内容,否则崩溃。

说明:OC调用方法[receiver selector],编译阶段确定了要向哪个接收者发送message消息,但是接收者如何响应决定于运行时的判断。

三、与Runtime的交互

Runtime的官方文档中将OC与Runtime的交互划分三种层次:OC源代码NSObject方法Runtime 函数。这其实也是按照与Runtime交互程度从低到高排序的三种方式。

1.OC源代码(Objec-C Source Code)

我们已经说过,OC代码会在编译阶段被编译器转化。OC中的类、方法和协议等在Runtime中都由一些数据结构来定义。所以,我们平时直接使用OC编写代码,其实这已经是在和Runtime进行交互了,只不过这个过程对于我们来说是无感的。

2.NSObject方法(NSObject Methods)

Runtime的最大特征就是实现了OC语言的动态特性。作为大部分Objective-C类继承体系的根类的NSObject,其本身就具有了一些非常具有运行时动态特性的方法,比如respondsToSelector:方法可以检查在代码运行阶段当前对象是否能响应指定的消息,所以使用这些方法也算是一种与Runtme的交互方式,类似的方法还有如下:

-description://返回当前类的描述信息

-class //方法返回对象的类;

-isKindOfClass: 和 -isMemberOfClass:  //检查对象是否存在于指定的类的继承体系中

-respondsToSelector:    //检查对象能否响应指定的消息;

-conformsToProtocol:    //检查对象是否实现了指定协议类的方法;

-methodForSelector:     //返回指定方法实现的地址。

3.使用Runtime函数(Runtime Functions)

Runtime系统是一个由一系列函数和数据结构组成,具有公共接口的动态共享库。头文件存放于/usr/include/objc目录下。在我们工程代码里引用Runtime的头文件,同样能够实现类似OC代码的效果,一些代码示例如下:

//相当于:Class class = [UIView class];
Class viewClass = objc_getClass("UIView");
    
//相当于:UIView *view = [UIView alloc];
UIView *view = ((id (*)(id, SEL))(void *)objc_msgSend)((id)viewClass, sel_registerName("alloc"));

//相当于:UIView *view = [view init];
((id (*)(id, SEL))(void *)objc_msgSend)((id)view, sel_registerName("init"));

三、分析Runtime中数据结构

OC代码被编译器转化为C语言,然后再通过运行时执行,最终实现了动态调用。这其中的OC类、对象和方法等都对应了C中的结构体,而且我们都可以在Rutime源码中找到它们的定义。

那么,我们如何来查看Runtime的代码呢?其实很简单,只需要我们在当前代码文件中引用头文件:

#import <objc/runtime.h>
#import <objc/message.h>

然后,我们需要使用组合键"Command +鼠标点击",即可进入Runtime的源码文件,下面我们继续来一一分析OC代码在C中对应的结构。

1.id—>objc_object

id是一个指向objc_object结构体的指针,即在Runtime中:

///A pointer to an instance of a class.
typedef struct objc_object *id;

下面是Runtime中对objc_object结构体的具体定义:

///Represents an instance of a class.
struct objc_object {
    Class _Nonnull isa  OBJC_ISA_AVAILABILITY;
};

我们都知道id在OC中是表示一个任意类型的类实例,从这里也可以看出,OC中的对象虽然没有明显的使用指针,但是在OC代码被编译转化为C之后,每个OC对象其实都是拥有一个isa的指针的。

2.Class - >objc_classs

class是一个指向objc_class结构体的指针,即在Runtime中:

typedef struct objc_class *Class; 

下面是Runtime中对objc_class结构体的具体定义:

//usr/include/objc/runtime.h
struct objc_class {
    Class _Nonnull isa  OBJC_ISA_AVAILABILITY;
#if !OBJC2

    Class Nullable super_class                              OBJC2UNAVAILABLE;
    const char * Nonnull name                               OBJC2UNAVAILABLE;
    long version                                             OBJC2_UNAVAILABLE;
    long info                                                OBJC2_UNAVAILABLE;
    long instance_size                                       OBJC2_UNAVAILABLE;
    struct objc_ivar_list * Nullable ivars                  OBJC2UNAVAILABLE;
    struct objc_method_list * Nullable * _Nullable methodLists                    OBJC2UNAVAILABLE;
    struct objc_cache * Nonnull cache                       OBJC2UNAVAILABLE;
    struct objc_protocol_list * Nullable protocols          OBJC2UNAVAILABLE;
#endif
} OBJC2_UNAVAILABLE;

理解objc_class定义中的参数:

isa指针:

我们会发现objc_class和objc_object同样是结构体,而且都拥有一个isa指针。我们很容易理解objc_object的isa指针指向对象的定义,那么objc_class的指针是怎么回事呢?
其实,在Runtime中Objc类本身同时也是一个对象。Runtime把类对象所属类型就叫做元类,用于描述类对象本身所具有的特征,最常见的类方法就被定义于此,所以objc_class中的isa指针指向的是元类,每个类仅有一个类对象,而每个类对象仅有一个与之相关的元类。

super_class指针:

super_class指针指向objc_class类所继承的父类,但是如果当前类已经是最顶层的类(如NSProxy),则super_class指针为NULL

cache:

为了优化性能,objc_class中的cache结构体用于记录每次使用类或者实例对象调用的方法。这样每次响应消息的时候,Runtime系统会优先在cache中寻找响应方法,相比直接在类的方法列表中遍历查找,效率更高。

ivars:

ivars用于存放所有的成员变量和属性信息,属性的存取方法都存放在methodLists中。

methodLists:

methodLists用于存放对象的所有成员方法。

3.SEL

SEL是一个指向objc_selector结构体的指针,即在Runtime中:

/// An opaque type that represents a method selector.
typedef struct objc_selector *SEL;

SEL在OC中称作方法选择器,用于表示运行时方法的名字,然而我们并不能在Runtime中找到它的结构体的详细定义。Objective-C在编译时,会依据每一个方法的名字、参数序列,生成一个唯一的整型标识(Int类型的地址),这个标识就是SEL。

注意
1.不同类中相同名字的方法对应的方法选择器是相同的。
2.即使是同一个类中,方法名相同而变量类型不同也会导致它们具有相同的方法选择器。

通常我们获取SEL有三种方法:
1.OC中,使用@selector(“方法名字符串”)
2.OC中,使用NSSelectorFromString(“方法名字符串”)
3.Runtime方法,使用sel_registerName(“方法名字符串”)

4.Ivar

Ivar代表类中实例变量的类型,是一个指向ojbcet_ivar的结构体的指针,即在Runtime中:

/// An opaque type that represents an instance variable.
typedef struct objc_ivar *Ivar;

下面是Runtime中对objc_ivar结构体的具体定义:

struct objc_ivar {
    char * Nullable ivar_name                               OBJC2UNAVAILABLE;
    char * Nullable ivar_type                               OBJC2UNAVAILABLE;
    int ivar_offset                                          OBJC2_UNAVAILABLE;
#ifdef LP64
    int space                                                OBJC2_UNAVAILABLE;
#endif
}          

我们在objc_class中看到的ivars成员列表,其中的元素就是Ivar,我可以通过实例查找其在类中的名字,这个过程被称为反射,下面的class_copyIvarList获取的不仅有实例变量还有属性:

   Ivar *ivarList = class_copyIvarList([self class], &count);
    for (int i= 0; i<count; i++) {
        Ivar ivar = ivarList[i];
        const char *ivarName = ivar_getName(ivar);
        NSLog(@"Ivar(%d): %@", i, [NSString stringWithUTF8String:ivarName]);
    }
    free(ivarList);

5.Method

Method表示某个方法的类型,即在Runtime中:

/// An opaque type that represents a method in a class definition.
typedef struct objc_method *Method;

我们可以在objct_class定义中看到methodLists,其中的元素就是Method,下面是Runtime中objc_method结构体的具体定义:

struct objc_method {
    SEL Nonnull method_name                                 OBJC2UNAVAILABLE;
    char * Nullable method_types                            OBJC2UNAVAILABLE;
    IMP Nonnull method_imp                                  OBJC2UNAVAILABLE;
}                                                           OBJC2_UNAVAILABLE;

理解objc_method定义中的参数:
method_name:方法名类型SEL
method_types: 一个char指针,指向存储方法的参数类型和返回值类型
method_imp:本质上是一个指针,指向方法的实现
这里其实就是SEL(method_name)与IMP(method_name)形成了一个映射,通过SEL,我们可以很方便的找到方法实现IMP。

5.IMP

IMP是一个函数指针,它在Runtime中的定义如下:

/// A pointer to the function of a method implementation.
typedef void (IMP)(void / id, SEL, ... */ ); 

IMP这个函数指针指向了方法实现的首地址,当OC发起消息后,最终执行的代码是由IMP指针决定的。利用这个特性,我们可以对代码进行优化:当需要大量重复调用方法的时候,我们可以绕开消息绑定而直接利用IMP指针调起方法,这样的执行将会更加高效,相关的代码示例如下:

void (*setter)(id, SEL, BOOL);
int i;
setter = (void (*)(id, SEL, BOOL))[target methodForSelector:@selector(setFilled:)];
for ( i = 0 ; i < 1000 ; i++ )
    setter(targetList[i], @selector(setFilled:), YES);

注意:这里需要注意的就是函数指针的前两个参数必须是id和SEL。

四、深入理解Rutime消息发送

我们在分析了OC语言对应的底层C结构之后,现在可以进一步理解运行时的消息发送机制。先前讲到,OC调用方法被编译转化为如下的形式:

id _Nullable objc_msgSend(id _Nullable self, SEL _Nonnull op, ...)

其实,除了常见的objc_msgSend,消息发送的方法还有objc_msgSend_stret,objc_msgSendSuper,objc_msgSendSuper_stret等,如果消息传递给超类就使用带有super的方法,如果返回值是结构体而不是简单值就使用带有stret的值。

运行时阶段的消息发送的详细步骤如下

  1. 检测selector 是不是需要忽略的。比如 Mac OS X 开发,有了垃圾回收就不理会retain,release 这些函数了。
  2. 检测target 是不是nil 对象。ObjC 的特性是允许对一个 nil对象执行任何一个方法不会 Crash,因为会被忽略掉。
  3. 如果上面两个都过了,那就开始查找这个类的 IMP,先从 cache 里面找,若可以找得到就跳到对应的函数去执行。
  4. 如果在cache里找不到就找一下方法列表methodLists。
  5. 如果methodLists找不到,就到超类的方法列表里寻找,一直找,直到找到NSObject类为止。
  6. 如果还找不到,Runtime就提供了如下三种方法来处理:动态方法解析消息接受者重定向消息重定向,这三种方法的调用关系如下图:
      Runtime-iOS运行时基础篇 消息转发流程图.png

1.动态方法解析(Dynamic Method Resolution)

所谓动态解析,我们可以理解为通过cache和方法列表没有找到方法时,Runtime为我们提供一次动态添加方法实现的机会,主要用到的方法如下:

//OC方法:
//类方法未找到时调起,可于此添加类方法实现
+ (BOOL)resolveClassMethod:(SEL)sel
//实例方法未找到时调起,可于此添加实例方法实现
+ (BOOL)resolveInstanceMethod:(SEL)sel

//Runtime方法:
/**
 运行时方法:向指定类中添加特定方法实现的操作
 @param cls 被添加方法的类
 @param name selector方法名
 @param imp 指向实现方法的函数指针
 @param types imp函数实现的返回值与参数类型
 @return 添加方法是否成功
 */
BOOL class_addMethod(Class _Nullable cls,
                     SEL _Nonnull name,
                     IMP _Nonnull imp,
                     const char * _Nullable types)

下面使用一个示例来说明动态解析:Perosn类中声明方法却未添加实现,我们通过Runtime动态方法解析的操作为其他添加方法实现,具体代码如下:

//Person.h文件

@interface Person : NSObject
//声明类方法,但未实现
+ (void)haveMeal:(NSString *)food;
//声明实例方法,但未实现
- (void)singSong:(NSString *)name;
@end
//Person.m文件

#import "Person.h"
#import <objc/runtime.h>
@implementation Person
//重写父类方法:处理类方法
+ (BOOL)resolveClassMethod:(SEL)sel{
    if(sel == @selector(haveMeal:)){
        class_addMethod(object_getClass(self), sel, class_getMethodImplementation(object_getClass(self), @selector(zs_haveMeal:)), "v@");
        return YES;   //添加函数实现,返回YES
    }
    return [class_getSuperclass(self) resolveClassMethod:sel];
}
//重写父类方法:处理实例方法
+ (BOOL)resolveInstanceMethod:(SEL)sel{
    if(sel == @selector(singSong:)){
        class_addMethod([self class], sel, class_getMethodImplementation([self class], @selector(zs_singSong:)), "v@");
        return YES;
    }
    return [super resolveInstanceMethod:sel];
}


+ (void)zs_haveMeal:(NSString *)food{
    NSLog(@"%s",__func__);
}

- (void)zs_singSong:(NSString *)name{
    NSLog(@"%s",__func__);
}
//TestViewController.m文件
//测试:Peson调用并未实现的类方法、实例方法,并没有崩溃
Person *ps = [[Person alloc] init];
[Person haveMeal:@"Apple"]; //打印:+[Person zs_haveMeal:]
[ps singSong:@"纸短情长"];   //打印:-[Person zs_singSong:]

注意1:我们注意到class_addMethod方法中的特殊参数“v@”,具体可参考这里
注意2:成功使用动态方法解析还有个前提,那就是我们必须存在可以处理消息的方法,比如上述代码中的zs_haveMeal:与zs_singSong:

2.消息接收者重定向

我们注意到动态方法解析过程中的两个resolve方法都返回了布尔值,当它们返回YES时方法即可正常执行,但是若它们返回NO,消息发送机制就进入了消息转发(Forwarding)的阶段了,我们可以使用Runtime通过下面的方法替换消息接收者的为其他对象,从而保证程序的继续执行。

//重定向类方法的消息接收者,返回一个类
- (id)forwardingTargetForSelector:(SEL)aSelector

//重定向实例方法的消息接受者,返回一个实例对象
- (id)forwardingTargetForSelector:(SEL)aSelector

下面使用一个示例来说明消息接收者的重定向:
我们创建一个Student类,声明并实现takeExam:、learnKnowledge:两个方法,然后在视图控制器TestViewController(一个继承了UIViewController的自定义类)里测试,关键代码如下:

//Student.h文件

@interface Student : NSObject
//类方法:参加考试
+ (void)takeExam:(NSString *)exam;
//实例方法:学习知识
- (void)learnKnowledge:(NSString *)course;
@end
//  Student.m文件

@implementation Student
+ (void)takeExam:(NSString *)exam{
    NSLog(@"%s",__func__);
}
- (void)learnKnowledge:(NSString *)course{
    NSLog(@"%s",__func__);
}
@end
//TestViewConroller.m文件
//重定向类方法:返回一个类对象
+ (id)forwardingTargetForSelector:(SEL)aSelector{
    if (aSelector == @selector(takeExam:)) {
         
        return [Student class];
    }
    return [super forwardingTargetForSelector:aSelector];
}
//重定向实例方法:返回类的实例
- (id)forwardingTargetForSelector:(SEL)aSelector{
    if (aSelector == @selector(learnKnowledge:)) {
        return self.student;
    }
    return [super forwardingTargetForSelector:aSelector];
}


//在TestViewConroller的viewDidLoad中测试:
//调用并未声明和实现的类方法
[TestViewController performSelector:@selector(takeExam:) withObject:@"语文"];

//调用并未声明和实现的类方法
self.student = [[Student alloc] init];
[self performSelector:@selector(learnKnowledge:) withObject:@"天文学知识"];

//正常打印:
// +[Student takeExam:]
// -[Student learnKnowledge:]

注意:动态方法解析阶段返回NO时,我们可以通过forwardingTargetForSelector可以修改消息的接收者,该方法返回参数是一个对象,如果这个对象是非nil,非self,系统会将运行的消息转发给这个对象执行。否则,继续查找其他流程。

3.消息重定向

当以上两种方法无法生效,那么这个对象会因为找不到相应的方法实现而无法响应消息,此时Runtime系统会通过forwardInvocation:消息通知该对象,给予此次消息发送最后一次寻找IMP的机会:

- (void)forwardInvocation:(NSInvocation *)anInvocation;

其实每个对象都从NSObject类中继承了forwardInvocation:方法,但是NSObject中的这个方法只是简单的调用了doesNotRecongnizeSelector:方法,提示我们错误。所以我们可以重写这个方法:对不能处理的消息做一些默认处理,也可以将消息转发给其他对象来处理,而不抛出错误。

我们注意到anInvocation是forwardInvocation唯一参数,它封装了原始的消息和消息参数。正是因为它,我们还不得不重写另一个函数:methodSignatureForSelector。这是因为在forwardInvocation: 消息发送前,Runtime系统会向对象发送methodSignatureForSelector消息,并取到返回的方法签名用于生成NSInvocation对象。

下面使用一个示例来重新定义转发逻辑:在上面的TestViewController添加如下代码:

-(void)forwardInvocation:(NSInvocation *)anInvocation{
    //1.从anInvocation中获取消息
    SEL sel = anInvocation.selector;
    //2.判断Student方法是否可以响应应sel
    if ([self.student respondsToSelector:sel]) {
        //2.1若可以响应,则将消息转发给其他对象处理
        [anInvocation invokeWithTarget:self.student];
    }else{
        //2.2若仍然无法响应,则报错:找不到响应方法
        [self doesNotRecognizeSelector:sel];
    }
}

//需要从这个方法中获取的信息来创建NSInvocation对象,因此我们必须重写这个方法,为给定的selector提供一个合适的方法签名。
- (NSMethodSignature*)methodSignatureForSelector:(SEL)aSelector{
    NSMethodSignature *methodSignature = [super methodSignatureForSelector:aSelector];
    if (!methodSignature) {
        methodSignature = [NSMethodSignature signatureWithObjCTypes:"v@:*"];
    }
    return methodSignature;
}

然后再在视图控制器里直接调用Student的方法如下:

//self是当前的TestViewController,调用了自己并不存在的learnKonwledge:方法
[self performSelector:@selector(learnKnowledge:) withObject:@"天文学”];

//正常打印:
//-[Student learnKnowledge:]

总结:

1.从以上的代码中就可以看出,forwardingTargetForSelector仅支持一个对象的返回,也就是说消息只能被转发给一个对象,而forwardInvocation可以将消息同时转发给任意多个对象,这就是两者的最大区别。

2.虽然理论上可以重载doesNotRecognizeSelector函数实现保证不抛出异常(不调用super实现),但是苹果文档着重提出“一定不能让这个函数就这么结束掉,必须抛出异常”。(If you override this method, you must call super or raise an invalidArgumentException exception at the end of your implementation. In other words, this method must not return normally; it must always result in an exception being thrown.)

3.forwardInvocation甚至能够修改消息的内容,用于实现更加强大的功能。

六、多继承的实现思路:Runtime

我们会发现Runtime消息转发的一个特点:一个对象可以调起它本身不具备的方法。这个过程与OC中的继承特性很相似,其实官方文档中图示也很好的说明了这个问题:

  Runtime-iOS运行时基础篇 forwarding.png

图中的Warrior通过forwardInvocation:将negotiate消息转发给了Diplomat,这就好像是Warrior使用了超类Diplomat的方法一样。所以从这个思路,我们可以在实际开发需求中模拟多继承的操作。

七、最后总结:

以上就是iOS运行时的基础知识部分了,理解Runtime的工作原理,下一篇iOS运行时Runtime应用,将总结其在实际开发中的使用。



作者:梧雨北辰
链接:https://www.jianshu.com/p/d4b55dae9a0d
来源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。
上一篇:OC + RAC (二) Command 命令的用法


下一篇:iOS-测试用例测试数组“firstObject“以及“lastObject“性能-by:nixs