介绍:点云贪心三角化
输入pcd文件,输出vtk文件。
主要就是一下两个参数:
设置用于确定用于三角测量的最近邻的球面半径
gpt.setSearchRadius (radius);
设置最近邻距离的乘法器,得到每个点的最终搜索半径(这将使算法适应云中不同的点密度)。
gpt.setMu (mu);
代码如下:
#include <pcl/io/pcd_io.h>
#include <pcl/io/vtk_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/surface/gp3.h>
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
double default_mu = 0.0;
double default_radius = 0.0;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s input.pcd output.vtk <options>\n", argv[0]);
print_info (" where options are:\n");
print_info (" -radius X = use a radius of Xm around each point to determine the neighborhood (default: ");
print_value ("%f", default_radius); print_info (")\n");
print_info (" -mu X = set the multipler of the nearest neighbor distance to obtain the final search radius (default: ");
print_value ("%f", default_mu); print_info (")\n");
}
bool
loadCloud (const std::string &filename, PointCloud<PointNormal> &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile<PointNormal> (filename, cloud) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
return (true);
}
void
compute (const PointCloud<PointNormal>::Ptr &input, pcl::PolygonMesh &output,
double mu, double radius)
{
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
PointCloud<PointNormal>::Ptr cloud (new PointCloud<PointNormal> ());
for (size_t i = 0; i < input->size (); ++i)
if (pcl_isfinite (input->points[i].x))
cloud->push_back (input->points[i]);
cloud->width = static_cast<uint32_t> (cloud->size ());
cloud->height = 1;
cloud->is_dense = true;
GreedyProjectionTriangulation<PointNormal> gpt;
gpt.setSearchMethod (pcl::search::KdTree<pcl::PointNormal>::Ptr (new pcl::search::KdTree<pcl::PointNormal>));
gpt.setInputCloud (cloud);
gpt.setSearchRadius (radius);
gpt.setMu (mu);
gpt.reconstruct (output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%lu", output.polygons.size ()); print_info (" polygons]\n");
}
void
saveCloud (const std::string &filename, const pcl::PolygonMesh &output)
{
TicToc tt;
tt.tic ();
print_highlight ("Saving "); print_value ("%s ", filename.c_str ());
saveVTKFile (filename, output);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%lu", output.polygons.size ()); print_info (" polygons]\n");
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Perform surface triangulation using pcl::GreedyProjectionTriangulation. For more information, use: %s -h\n", argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
// Parse the command line arguments for .pcd files
std::vector<int> pcd_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (pcd_file_indices.size () != 1)
{
print_error ("Need one input PCD file to continue.\n");
return (-1);
}
std::vector<int> vtk_file_indices = parse_file_extension_argument (argc, argv, ".vtk");
if (vtk_file_indices.size () != 1)
{
print_error ("Need one output VTK file to continue.\n");
return (-1);
}
// Command line parsing
double mu = default_mu;
double radius = default_radius;
parse_argument (argc, argv, "-mu", mu);
parse_argument (argc, argv, "-radius", radius);
// Load the first file
PointCloud<PointNormal>::Ptr cloud (new PointCloud<PointNormal>);
if (!loadCloud (argv[pcd_file_indices[0]], *cloud))
return (-1);
// Perform the surface triangulation
pcl::PolygonMesh output;
compute (cloud, output, mu, radius);
// Save into the second file
saveCloud (argv[vtk_file_indices[0]], output);
}
来源:PCL官方示例