线程池源码探究

1.线程池简介

使用线程池,一般会使用JDK提供的几种封装类型,即:newFixedThreadPoolnewSingleThreadExecutornewCachedThreadPool等,这些线程池的定义在Executors类中,来看看相关的源码:

    public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
        return new ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>(),
                                      threadFactory);
    }

    public static ExecutorService newSingleThreadExecutor() {
        return new FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

    public static ExecutorService newFixedThreadPool(int nThreads) {
        return new ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

这些方法内部都使用了ThreadPoolExecutor的构造方法,区别只是传入的参数不同。ThreadPoolExecutor有四个重载的构造方法,最终调用的是由7个参数的构造器,其源码如下:

    public ThreadPoolExecutor(int corePoolSize,
                              int maximumPoolSize,
                              long keepAliveTime,
                              TimeUnit unit,
                              BlockingQueue<Runnable> workQueue,
                              ThreadFactory threadFactory,
                              RejectedExecutionHandler handler) {
        //参数校验
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

参数解释:

  • corePoolSize:核心池大小,默认情况下,线程池启动之后,并不会立即创建线程,而是要等到任务到来之后,才创建线程去执行任务(除非设置了allowCoreThreadTimeOut参数,该参数会在线程池启动之后立马创建核心池数量的线程)。随着任务的不断增加,现有线程无法满足要求,就会不断的创建新线程,直到线程数达到corePoolSize的值,后续新来的任务会放入阻塞队列;
  • maximumPoolSize: 最大池大小,当任务太多,阻塞队列满了之后,如果线程数量还没有超过该参数的值,就会继续创建新线程,直到线程数达到该参数规定的值,后续再来的任务会使用拒绝策略进行处理;
  • keepAliveTime: 如果线程数超过corePoolSize的值,那么多余的线程在空闲keepAliveTime时间后会被销毁;
  • unit: keepAliveTime参数的单位;
  • workQueue: 阻塞队列;
  • threadFactory: 线程工厂,创建线程时需要使用到该工厂;
  • handler: 拒绝策略。

2.核心字段

ThreadPoolExecutor的核心字段如下:

    //ctl低29位表示线程的数量,高3位表示线程池状态,因此当前线程池允许的最大线程数量是2^29-1
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    //固定值29
    private static final int COUNT_BITS = Integer.SIZE - 3;
    //线程最大容量
    private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

    // runState is stored in the high-order bits
    //线程池的运行时状态,负数表示正在运行,正数表示终止情况
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

3.线程池状态

线程池的状态有5种,状态之间的转换关系如下图:
线程池源码探究
初始情况下,线程池创建完毕后会处于RUNNING状态,可以正常的接受新任务;当调用shutdown()时,线程池变成SHUTDOWN状态,此时无法接受新任务,但是会继续执行阻塞队列中的任务;当调用shutdownNow()时,线程由RUNNING状态变成STOP状态,此时不能接受新任务,并且会中断正在执行的任务;当线程池中的线程数减少为0时,就会转成TIDYING状态;在TIDYING状态会自动调用terminated()使线程池转为TERMINATED状态。

  • shutdown()
    shutdown()方法的逻辑分别由5个不同的方法来实现,这里将这些方法整理在一起,如下:
    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            //检查security manager是否允许调用方执行此方法
            checkShutdownAccess();
            //将线程池状态更新为SHUTDOWN
            advanceRunState(SHUTDOWN);
            //中断空闲线程
            interruptIdleWorkers();
            //这是一个空实现,允许子类进行重写
            onShutdown(); // hook for ScheduledThreadPoolExecutor
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
    }

    private void advanceRunState(int targetState) {
        for (;;) {
            int c = ctl.get();
            //如果线程池已经处在targetState及之后的状态则直接结束循环,否则使用CAS操作将线程池状态更新为targetState
            if (runStateAtLeast(c, targetState) ||
                ctl.compareAndSet(c, ctlOf(targetState, workerCountOf(c))))
                break;
        }
    }

    private void interruptIdleWorkers() {
        interruptIdleWorkers(false);
    }

    //onlyOne表示是否只终止一个空闲线程
    private void interruptIdleWorkers(boolean onlyOne) {
        final ReentrantLock mainLock = this.mainLock;
        //加可重入锁
        mainLock.lock();
        try {
            for (Worker w : workers) {
                Thread t = w.thread;
                //如果线程没有被中断,则尝试获取锁,获取成功后将线程中断
                if (!t.isInterrupted() && w.tryLock()) {
                    try {
                        t.interrupt();
                    } catch (SecurityException ignore) {
                    } finally {
                        //释放锁
                        w.unlock();
                    }
                }
                if (onlyOne)
                    break;
            }
        } finally {
            mainLock.unlock();
        }
    }

    final void tryTerminate() {
        //自旋
        for (;;) {
            int c = ctl.get();
            //线程池还在运行,或者已经是TIDYING或TERMINATED状态,或者阻塞队列不为空,这几种情况不再继续执行
            if (isRunning(c) ||
                runStateAtLeast(c, TIDYING) ||
                (runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty()))
                return;
            //线程数不为0时,终止一个空闲线程
            if (workerCountOf(c) != 0) { // Eligible to terminate
                interruptIdleWorkers(ONLY_ONE);
                return;
            }

            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                //将线程池设置为DIDYING状态
                if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) {
                    //设置成功后,执行terminated()方法
                    try {
                        //这也是一个空实现,子类可以根据需要进行重写
                        terminated();
                    } finally {
                        //将线程池设置为TERMINATED状态
                        ctl.set(ctlOf(TERMINATED, 0));
                        termination.signalAll();
                    }
                    return;
                }
            } finally {
                mainLock.unlock();
            }
            // else retry on failed CAS
        }
    }
  • shutdownNow()
    public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            //检查security manager是否允许调用方执行此方法
            checkShutdownAccess();
            //将线程池状态更新为STOP
            advanceRunState(STOP);
            //与shutdown的区别是,这里会中断所有线程,而不仅仅是空闲线程
            interruptWorkers();
            //将任务从workQueue中移除,转移到一个ArrayList中,此操作后,workQueue为空,已有的任务无法继承执行
            tasks = drainQueue();
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    }
    
    //中断所有线程
    private void interruptWorkers() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            for (Worker w : workers)
                w.interruptIfStarted();
        } finally {
            mainLock.unlock();
        }
    }

4.执行任务

线程池通过execute()方法执行任务,其源码如下:

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();

        int c = ctl.get();
        //如果当前活跃线程小于核心池大小,就尝试创建新的线程
        if (workerCountOf(c) < corePoolSize) {
            //如果成功创建新线程并且启动成功,直接返回
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        //线程池处于运行状态,并且成功将任务加入阻塞队列时,会执行下面的代码
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            //如果重复检查时,线程池已经不是运行状态,则将刚添加的任务从阻塞队列中移除,并执行拒绝策略
            if (! isRunning(recheck) && remove(command))
                reject(command);
            //如果活跃线程为0,则创建一个非核心线程,并将firstTask设置为null
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //如果添加非核心线程失败,则执行拒绝策略
        else if (!addWorker(command, false))
            reject(command);
    }
    
    //获取活跃的线程数
    private static int workerCountOf(int c)  { return c & CAPACITY; }
    //获取线程池运行状态
    private static int runStateOf(int c)     { return c & ~CAPACITY; }

来看看addWorker()方法的实现:

    //core表示要创建的是否是核心线程,true表示创建核心线程,false表示创建非核心线程
    private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        for (;;) {
            int c = ctl.get();
            //获取线程池状态
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            //rs >= SHUTDOWN,表示线程池已终止
            //rs>=SHUTDOWN,说明已经调用了shutdown()或者shutdownNow()方法,在此条件满足的情况下,第二项条件等同于
            //rs!=SHUTDOWN || firstTask != null || workQueue.isEmpty(),满足这三个条件的任何一个都不会再添加新任务
            //rs!=SHUTDOWN,说明是STOP、TIDYING、TERMINATE这三种
            if (rs >= SHUTDOWN &&
                ! (rs == SHUTDOWN &&
                   firstTask == null &&
                   ! workQueue.isEmpty()))
                return false;

            //执行到这里说明:
            //① rs<SHUTDOWN,即线程池是运行状态
            //② rs=SHUTDOWN,farstTask=null, 并且阻塞队列不为空
            for (;;) {
                int wc = workerCountOf(c);
                //有三种情况会返回false:1)线程数达到最大值;2)当前创建核心线程,但是线程数已经达到核心池大小;
                //3)当前创建非核心线程,并且线程数达到最大池大小
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                    return false;
                //如果使用CAS操作成功将ctl的值加1,则跳出最外层循环
                if (compareAndIncrementWorkerCount(c))
                    break retry;
                //走到这里说明无法使用CAS更新ctl的值,说明此时发生了多线程竞争,需要重新查看线程池的状态
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);
            final Thread t = w.thread;
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;
                //加重入锁
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());

                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        //workers是个HashSet类型,只在重入锁代码中被访问
                        workers.add(w);
                        //更新当前活跃线程的最大值
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    //启动线程,调用Worker类的run()方法
                    t.start();
                    workerStarted = true;
                }
            }
        } finally {
            //成功创建新线程时,才会设置workerStarted=true,这里处理没有创建新线程的情况
            if (! workerStarted)
                addWorkerFailed(w);
        }
        return workerStarted;
    }

addWorker()方法中用到了Worker类,这是ThreadPoolExecutor的内部类,对线程进行了包装,线程池创建或者启动的线程,实际都是Worker类型的实例,其源码如下(省略了无关代码):

    private final class Worker extends AbstractQueuedSynchronizer implements Runnable
    {

        /** Thread this worker is running in.  Null if factory fails. */
        final Thread thread;
        /** Initial task to run.  Possibly null. */
        Runnable firstTask;
        /** Per-thread task counter */
        volatile long completedTasks;

        Worker(Runnable firstTask) {
            setState(-1); 
            this.firstTask = firstTask;
            this.thread = getThreadFactory().newThread(this);
        }

        /** Delegates main run loop to outer runWorker  */
        public void run() {
            runWorker(this);
        }

当启动Worker线程时,会调用runWorker()方法,每一个启动的线程都会在该方法的while循环中不断获取任务去执行,该方法源码如下:

    final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts
        boolean completedAbruptly = true;
        try {
            //如果能够成功拿到任务,则执行下面的代码块,如果getTask()方法返回null,当前线程就会执行退出逻辑
            while (task != null || (task = getTask()) != null) {
                //如果能将state字段设置为1,表示成功拿到锁,就接着向下执行,否则线程会加入等待队列,不再继续执行
                //注意这里是在成功拿到新任务之后才会加锁,结合shutdown()方法的逻辑
                w.lock();
                // If pool is stopping, ensure thread is interrupted;
                // if not, ensure thread is not interrupted.  This
                // requires a recheck in second case to deal with
                // shutdownNow race while clearing interrupt
                //如果线程池正在关闭,需要中断当前线程
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();
                try {
                    //前置钩子
                    beforeExecute(wt, task);
                    Throwable thrown = null;
                    try {
                        //执行任务
                        task.run();
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                        //后置钩子
                        afterExecute(task, thrown);
                    }
                } finally {
                    task = null;
                    w.completedTasks++;
                    //释放锁
                    w.unlock();
                }
            }
            completedAbruptly = false;
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }

beforeExecute()afterExecute()protected类型,并且默认是空实现,很明显是留给子类去实现钩子逻辑。上面的代码使用getTask()从阻塞队列中取任务,其实现如下:

    private Runnable getTask() {
        boolean timedOut = false; // Did the last poll() time out?

        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);

            // Check if queue empty only if necessary.
            //线程池正在关闭,或者阻塞队列空了,就减少线程数,并返回null
            if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
                decrementWorkerCount();
                return null;
            }

            int wc = workerCountOf(c);

            // Are workers subject to culling?
            //在设置了allowCoreThreadTimeOut参数后,超过给定的时间,会将空闲的核心线程清理掉
            //或者线程数量超过了核心池数量,会在一定时间后清理掉多余的线程
            boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
            //1)线程数量超过最大池数量,或者超时; 2)线程数大于1,或者阻塞队列为空; 这两个条件都成立时,就将ctl值减1
            if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
                if (compareAndDecrementWorkerCount(c))
                    return null;
                continue;
            }

            try {
                //如果设置了超时状态,则使用poll方法取任务,超过keepAliveTime还没有任务到来就返回true
                //否则使用take取任务,在阻塞队列为空时会一直等待
                Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
                if (r != null)
                    return r;
                timedOut = true;
            } catch (InterruptedException retry) {
                //线程有可能在等待新任务的到来而阻塞,但是在等待的过程中调用shutdownNow()关闭线程时,线程会抛出中断异常,在这里被捕获
                timedOut = false;
            }
        }
    }

现在来整理一下runWorker()方法的思路:每一个新创建的线程都会在runWorker()方法里通过while循环不断地从阻塞队列中获取任务,取到任务之后就执行任务的run()方法,取不到任务就会一直阻塞,或者等待一定的时间之后,空闲线程超时需要回收,就会执行processWorkerExit()方法。

5.线程池是如何关闭的

  • shutdown()
    在介绍shutdown()方法时有一个疑问,该方法只会中断空闲线程,但是非空闲的线程不会被中断,即使该线程被阻塞,因此该方法有可能无法关闭那些一直处在等待状态的非空闲线程,这一点在使用时需要注意。在runWorker()方法中,while循环会在成功拿到任务后才会加锁,因此那些由于阻塞队列为空拿不到任务而阻塞的线程也会被shutdown()方法中断
while (task != null || (task = getTask()) != null) {
    //如果能将state字段设置为1,表示成功拿到锁,就接着向下执行,否则线程会加入等待队列,不再继续执行
    //注意这里是在成功拿到新任务之后才会加锁,结合shutdown()方法的逻辑
    w.lock();
    //忽略其他代码
}
  • shutdownNow()
    shutdownNow()会中断所有的存活线程,不论这些线程是否空闲,因此可能会导致任务在执行的过程中抛出异常,这点需要注意。

不论是调用哪个方法来关闭线程池,最终线程的退出是要根据getTask()方法来决定。当getTask()方法返回null,即当前阻塞队列已经没有任务时,线程会退出,并且在getTask()方法的自旋代码会首先检查线程池的状态,如下:

    if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
        decrementWorkerCount();
        return null;
    }

在调用shutdownNow()方法关闭线程池后,rs >= STOP逻辑成立,直接返回null,而shutdown()方法会继续执行阻塞队列中的任务,直到workQueue.isEmpty()条件为真,getTask()返回null导致线程一个个结束,不论是哪种情况,最终线程池中的线程数量都会变成0。

上一篇:控制文件和日志文件,分别放到不同磁盘


下一篇:阿里云服务器上-Linux系统搭建gitlab的详细过程