Python中归一化特征到一定数值区间的函数——MinMaxScaler()

使用MinMaxScaler()需要首先引入包sklearn,

MinMaxScaler()在包sklearn.preprocessing下

可以将任意数值归一化处理到一定区间。

MinMaxScaler()函数原型为:

sklearn.preprocessing.MinMaxScaler(feature_range=(0, 1), copy=True)

其中feature_range表示归一化范围。copy默认为True,为拷贝属性,默认为True,表示对原数据组拷贝操作,这样变换后元数组不变,False表 示变换操作后,原数组也跟随变化。

函数的数学模型为:

from sklearn import preprocessing
import numpy as np
x = np.array([[1.,-1.,2.],
 [2.,0.,0.],
 [0.,1.,-1.]])
min_max_scaler = preprocessing.MinMaxScaler()#默认为范围0~1,拷贝操作
#min_max_scaler = preprocessing.MinMaxScaler(feature_range = (1,3),copy = False)#范围改为1~3,对原数组操作
x_minmax = min_max_scaler.fit_transform(x)
print('x_minmax = ',x_minmax)
print('x = ',x)
#新的测试数据进来,同样的转换
x_test = np.array([[-3,-1,4.],
 [0,-1,10]])
x_test_maxabs = min_max_scaler.transform(x_test)
print('x_test_maxabs = ',x_test_maxabs)

运行结果:

Python中归一化特征到一定数值区间的函数——MinMaxScaler()

 

上一篇:Unity与C#的序列化与反序列化


下一篇:Unity 2D Movement 物体移动案例