C#利用Emit反射实现AOP,以及平台化框架封装思路
这是前两天扒的一段动态代理AOP代码,用的Emit反射生成子类来实现代理模式,在这里做个小笔记,然后讨论一下AOP框架的实现思路。
首先是主函数:
static void Main(string[] args)
{
RealClass proxy = (RealClass)DynamicProxyBuilder.Wrap(typeof(RealClass));
proxy.Test(); Console.ReadKey();
}
用一个动态代理Builder包装了真实的被代理类,这是被代理类:
public class RealClass
{
public RealClass() { } //必须是虚方法
public virtual bool Test()
{
return false;
}
}
我们需要在Test执行前后做一些事情,也就是拦截器,这里以一个布尔值为例子,随便一写:
public class Interceptor
{
public Object Call(String methodName, MulticastDelegate methodDelegate, params Object[] args)
{
Object obj = null;
try
{
Console.WriteLine("进入拦截器,执行之前方法"); obj = methodDelegate.Method.Invoke(methodDelegate.Target, args);
if ((bool)obj)
{
Console.WriteLine("返回真");
}
else
{
Console.WriteLine("返回假");
} Console.WriteLine("执行之后方法,离开拦截器");
}
catch (ApplicationException ex)
{
Console.WriteLine("出现异常");
} return obj;
}
}
即,在主函数里通过一个“框架API”调用这个类的代理子类来执行拦截器里的方法,DynamicProxyBuilder类代码如下:
using ConsoleApplication1;
using System;
using System.Reflection;
using System.Reflection.Emit;
namespace Aop
{
public static class DynamicProxyBuilder
{
private const string dllName = "DynamicProxy.dll";
public static Object Wrap(Type type)
{
Type newType = null;
try
{
Type m_Type = type;
AppDomain domain = AppDomain.CurrentDomain;
AssemblyBuilder m_Assembly = domain.DefineDynamicAssembly(new AssemblyName("DynamicModule"), AssemblyBuilderAccess.RunAndSave);
ModuleBuilder m_Module = m_Assembly.DefineDynamicModule("Module", dllName);
TypeBuilder m_TypeBuilder = m_Module.DefineType(m_Type.Name + "_proxy_" + m_Type.GetHashCode().ToString(), TypeAttributes.Class | TypeAttributes.Public | TypeAttributes.Sealed, m_Type);
MethodInfo[] methodInfos = m_Type.GetMethods();
TypeBuilder[] m_NestedTypeBuilders = new TypeBuilder[methodInfos.Length];
ConstructorBuilder[] m_NestedTypeConstructors = new ConstructorBuilder[methodInfos.Length];
FieldBuilder m_Interceptor = m_TypeBuilder.DefineField("__Interceptor", typeof(Interceptor), FieldAttributes.Private);
FieldBuilder[] m_MultiCastDelegates = new FieldBuilder[methodInfos.Length];
MethodBuilder[] m_CallBackMethods = new MethodBuilder[methodInfos.Length];
ConstructorBuilder m_ConstructorBuilder = m_TypeBuilder.DefineConstructor(MethodAttributes.Public, CallingConventions.Standard, new Type[] { typeof(Interceptor) });
for (Int32 i = 0; i < m_NestedTypeBuilders.Length; i++)
{
m_NestedTypeBuilders[i] = m_TypeBuilder.DefineNestedType("__" + methodInfos[i].Name + "__delegate", TypeAttributes.NestedPrivate | TypeAttributes.Sealed, typeof(MulticastDelegate));
m_NestedTypeConstructors[i] = m_NestedTypeBuilders[i].DefineConstructor(MethodAttributes.Public, CallingConventions.Standard, new Type[] { typeof(Object), typeof(IntPtr) });
m_NestedTypeConstructors[i].SetImplementationFlags(MethodImplAttributes.Runtime | MethodImplAttributes.Managed);
Type[] argsType = GetParameterTypes(methodInfos[i]);
MethodBuilder mb = m_NestedTypeBuilders[i].DefineMethod("Invoke", MethodAttributes.Public, CallingConventions.Standard, methodInfos[i].ReturnType, argsType);
mb.SetImplementationFlags(MethodImplAttributes.Runtime | MethodImplAttributes.Managed);
}
for (Int32 i = 0; i < methodInfos.Length; i++)
{
m_MultiCastDelegates[i] = m_TypeBuilder.DefineField(methodInfos[i].Name + "_field", m_NestedTypeBuilders[i], FieldAttributes.Private);
}
for (Int32 i = 0; i < methodInfos.Length; i++)
{
Type[] argTypes = GetParameterTypes(methodInfos[i]);
m_CallBackMethods[i] = m_TypeBuilder.DefineMethod("callback_" + methodInfos[i].Name, MethodAttributes.Private, CallingConventions.Standard, methodInfos[i].ReturnType, argTypes);
ILGenerator ilGenerator = m_CallBackMethods[i].GetILGenerator();
ilGenerator.Emit(OpCodes.Ldarg_0);
for (Int32 j = 0; j < argTypes.Length; j++)
{
ilGenerator.Emit(OpCodes.Ldarg, j + 1);
}
ilGenerator.Emit(OpCodes.Call, methodInfos[i]);
ilGenerator.Emit(OpCodes.Ret);
}
for (Int32 i = 0; i < methodInfos.Length; i++)
{
Type[] argTypes = GetParameterTypes(methodInfos[i]);
MethodBuilder mb = m_TypeBuilder.DefineMethod(methodInfos[i].Name, MethodAttributes.Public | MethodAttributes.Virtual, CallingConventions.Standard, methodInfos[i].ReturnType, argTypes);
ILGenerator ilGenerator = mb.GetILGenerator();
ilGenerator.Emit(OpCodes.Ldarg_0);
ilGenerator.Emit(OpCodes.Ldfld, m_Interceptor);
ilGenerator.Emit(OpCodes.Ldstr, methodInfos[i].Name);
ilGenerator.Emit(OpCodes.Ldarg_0);
ilGenerator.Emit(OpCodes.Ldfld, m_MultiCastDelegates[i]);
LocalBuilder local = ilGenerator.DeclareLocal(typeof(Object[]));
ilGenerator.Emit(OpCodes.Ldc_I4, argTypes.Length);
ilGenerator.Emit(OpCodes.Newarr, typeof(Object));
ilGenerator.Emit(OpCodes.Stloc, local);
ilGenerator.Emit(OpCodes.Ldloc, local);
for (Int32 j = 0; j < argTypes.Length; j++)
{
ilGenerator.Emit(OpCodes.Ldc_I4, j);
ilGenerator.Emit(OpCodes.Ldarg, j + 1);
ilGenerator.Emit(OpCodes.Box, argTypes[j]);
ilGenerator.Emit(OpCodes.Stelem_Ref);
ilGenerator.Emit(OpCodes.Ldloc, local);
}
ilGenerator.Emit(OpCodes.Call, typeof(Interceptor).GetMethod("Call", new Type[] { typeof(String), typeof(MulticastDelegate), typeof(Object[]) }));
if (methodInfos[i].ReturnType.Equals(typeof(void)))
{
ilGenerator.Emit(OpCodes.Pop);
}
else
{
ilGenerator.Emit(OpCodes.Unbox_Any, methodInfos[i].ReturnType);
}
ilGenerator.Emit(OpCodes.Ret);
}
ILGenerator ilGenerator2 = m_ConstructorBuilder.GetILGenerator();
ilGenerator2.Emit(OpCodes.Ldarg_0);
ilGenerator2.Emit(OpCodes.Call, m_Type.GetConstructor(new Type[] { }));
ilGenerator2.Emit(OpCodes.Ldarg_0);
ilGenerator2.Emit(OpCodes.Ldarg_1);
ilGenerator2.Emit(OpCodes.Stfld, m_Interceptor);
for (Int32 i = 0; i < m_MultiCastDelegates.Length; i++)
{
ilGenerator2.Emit(OpCodes.Ldarg_0);
ilGenerator2.Emit(OpCodes.Ldarg_0);
ilGenerator2.Emit(OpCodes.Ldftn, m_CallBackMethods[i]);
ilGenerator2.Emit(OpCodes.Newobj, m_NestedTypeConstructors[i]);
ilGenerator2.Emit(OpCodes.Stfld, m_MultiCastDelegates[i]);
}
ilGenerator2.Emit(OpCodes.Ret);
newType = m_TypeBuilder.CreateType();
foreach (TypeBuilder tb in m_NestedTypeBuilders)
{
tb.CreateType();
}
m_Assembly.Save(dllName);
}
catch (Exception err)
{
throw err;
}
return Activator.CreateInstance(newType, new Interceptor());
}
internal static Type[] GetParameterTypes(MethodInfo methodInfo)
{
ParameterInfo[] args = methodInfo.GetParameters();
Type[] argsType = new Type[args.Length];
for (Int32 j = 0; j < args.Length; j++)
{
argsType[j] = args[j].ParameterType;
}
return argsType;
}
}
}
这个程序在运行时会在bin下创建一个DynamicProxy.dll,里面是用Emit反射生成的代理子类,复写了父类的方法。
上面的代码里有一个Interceptor类,封装AOP框架的一个思路就是把这个类提出一个接口,里面有之前、之后、异常等方法,然后让一个抽象类实现这个接口,提供空实现骨架(模板方法模式),把这个抽象类注入到子类构造器当中来构造子类。
如果要结合项目造*的话,则允许以这个接口为标准二次开发具体的拦截器,并且可以根据需求封装配置界面,来配置针对系统当中哪一个具体操作命令来进行拦截。
DynamicProxyBuilder.Wrap这个方法可以封装为一个人性化的框架接口(作为AOP框架的API)来创建代理子类。
有必要将拦截器类放入IoC容器当中以防每次反射。
最后,动态代理性能很差,至少第一次生成dll很慢,而且看不懂!
真不想用框架、要自己写AOP的话,还是直接让最终执行核心方法的类实现拦截器接口,然后直接在自己的框架里调接口吧,这样还看得懂,别搞什么Emit!
最后引用马老师的一句经典语录——搞毛飞机啊!