\(\mathcal{Description}\)
Link.
在一张 \(n\times m\) 的网格图中有空格 .
和障碍格 #
,\(q\) 次询问,每次查询从 \((x_1,y_1)\) 出发,是否能仅向下或向右走,在不经过障碍格的情况下走到 \((x_2,y_2)\)。
\(n,m\le500\),\(q\le6\times10^5\)。
\(\mathcal{Solution}\)
Trick 向的分治解法。
不妨按行分治,设当前分治区间为 \([l,r]\),取中点 \(p\),则本层分治求解满足 \(l\le x_1\le p<x_2\le r\) 的所有询问(对于 \(x_1=x_2\) 的,特判即可)。记 \(f(i,j)\) 表示从 \((i,j)\) 出发,仅向下或向右走能到达的所有 \((p,k)\) 中 \(k\) 的集合(\(l\le i\le p\));对应地记 \(g(i,j)\) 表示从 \((i,j)\) 出发,仅向上或向左走能到达的所有 \((p,k)\) 中 \(k\) 的集合(\(p<i\le r\))。用 std::bitset
维护转移就能快速求解。
复杂度 \(\mathcal O\left(\left(\frac{nm^2}{\omega}+q\right)\log n\right)\)。
\(\mathcal{Code}\)
/* Clearink */
#include <bitset>
#include <cstdio>
#include <vector>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
#define x1 my_x1
#define x2 my_x2
#define y1 my_y1
#define y2 my_y2
inline int rint() {
int x = 0, f = 1, s = getchar();
for ( ; s < '0' || '9' < s; s = getchar() ) f = s == '-' ? -f : f;
for ( ; '0' <= s && s <= '9'; s = getchar() ) x = x * 10 + ( s ^ '0' );
return x * f;
}
template<typename Tp>
inline void wint( Tp x ) {
if ( x < 0 ) putchar( '-' ), x = -x;
if ( 9 < x ) wint( x / 10 );
putchar( x % 10 ^ '0' );
}
const int MAXN = 500, MAXQ = 6e5;
int n, m, q;
bool ans[MAXQ + 5];
char grid[MAXN + 5][MAXN + 5];
std::bitset<MAXN + 5> f[MAXN + 5][MAXN + 5];
struct Query { int x1, y1, x2, y2, id; };
std::vector<Query> allq;
inline void solve( const int l, const int r, const std::vector<Query>& qry ) {
if ( qry.empty() ) return ;
int mid = l + r >> 1;
per ( i, m, 1 ) {
if ( grid[mid][i] == '.' ) ( f[mid][i] = f[mid][i + 1] ).set( i );
else f[mid][i].reset();
}
rep ( i, 1, m ) { // save data in f[0] temporarily.
if ( grid[mid][i] == '.' ) ( f[0][i] = f[0][i - 1] ).set( i );
else f[0][i].reset();
}
per ( i, mid - 1, l ) {
per ( j, m, 1 ) {
if ( grid[i][j] == '.' ) f[i][j] = f[i + 1][j] | f[i][j + 1];
else f[i][j].reset();
}
}
rep ( i, mid + 1, r ) {
rep ( j, 1, m ) {
if ( grid[i][j] == '.' ) {
f[i][j] = f[i == mid + 1 ? 0 : i - 1][j] | f[i][j - 1];
} else f[i][j].reset();
}
}
if ( l == r ) {
for ( auto q: qry ) ans[q.id] = f[l][q.y1].test( q.y2 );
return ;
}
std::vector<Query> lefq, rigq;
for ( auto q: qry ) {
if ( q.x2 <= mid ) lefq.push_back( q );
else if ( mid < q.x1 ) rigq.push_back( q );
else ans[q.id] = ( f[q.x1][q.y1] & f[q.x2][q.y2] ).any();
}
solve( l, mid, lefq ), solve( mid + 1, r, rigq );
}
int main() {
n = rint(), m = rint();
rep ( i, 1, n ) scanf( "%s", grid[i] + 1 );
allq.resize( q = rint() );
rep ( i, 0, q - 1 ) {
allq[i].x1 = rint(), allq[i].y1 = rint();
allq[i].x2 = rint(), allq[i].y2 = rint();
allq[i].id = i + 1;
}
solve( 1, n, allq );
rep ( i, 1, q ) puts( ans[i] ? "Yes" : "No" );
return 0;
}