到目前为止, 我们已经学习到了插入排序, 冒泡排序, 选择排序(selection)。 这些排序算法都是comparision based sorting algorithms(即涉及到元素大小的比较来决定元素的先后顺序)。 而且算法的时间复杂度上均为O(n^2)。但是comparision based 的排序算法远非这几个算法。 而且可以通过利用其它的一些手段(例如divide and conquer technique, 分治法)实现对基于比较的排序算法的时间复杂度降低到O(nlogn)。 其中一个就是quick sort, 故名思议, quick sort 的速度很快。
quick sort 可以采用一个in-place partition algorithm实现。quck sort 在递归的时候仅需要占用stack额外空间为O(logn)。
quick sort 是一个divide and conquer algorithms。 快排序通过首先对一个large array 分成2个小的subarrays: 即the low elements and the high elements。 Quick sort 可以recursively sort the subarrays。
快排序的步骤如下:
- Pick an element, called a pivot, from the array.
- Reorder the array so that all elements with values less than the pivot come before the pivot, while all elements with values greater than the pivot come after it (equal values can go either way). After this partitioning, the pivot is in its final position(也就是说, 这个pivot在其最后排好序的actual place). This is called the partition operation.
- Recursively apply the above steps to the sub-array of elements with smaller values and separately to the sub-array of elements with greater values.
既然需要递归, 所以我们需要知道递归的base case。
递归的base case 是地方数组的size 为0 或者为1的的时候, 此时该子数组已经是排好序的了(sorted)。
quick sort的pseudo code 如下(对数组中i 到k(inclusive)的元素进行排序):
quicksort(A, i, k): if i < k: p := partition(A, i, k) quicksort(A, i, p - 1) quicksort(A, p + 1, k)
要对这个array 进行快排序, 仅需要调用 quicksort(A, 0, length(A)-1), partition operation的伪代码如下:
// left is the index of the leftmost element of the subarray
// right is the index of the rightmost element of the subarray (inclusive)
// number of elements in subarray = right-left+1
partition(array, left, right)
pivotIndex := choose-pivot(array, left, right)// 我们可以选择正中间的元素作为pivot, 然后将其换到最左边去
pivotValue := array[pivotIndex]
swap array[pivotIndex] and array[right]
storeIndex := left
for i from left to right - 1
if array[i] ≤ pivotValue
swap array[i] and array[storeIndex]
storeIndex := storeIndex + 1
swap array[storeIndex] and array[right] // Move pivot to its final(actual) place
return storeIndex
下面以一个数组例子给上述的partition 的伪代码进行分析(下图选择最左边的作为pivot):
//quick sort for array based list #include <iostream> #include <ctime> #include <cstdlib> // 产生随机数 #include <iomanip> using namespace std; template <class elemType> void print(elemType list[], int length); template <class elemType> int partition(elemType[], int, int); template <class elemType> void swap(elemType[], int, int); template <class elemType> void recursionQuick(elemType[], int, int); //quick sort template <class elemType> void quickSort(elemType [], int); int main() { int intList[100]; int num; for (int i = 0; i < 100; i++){ num = (rand() + time(0)) %1000; intList[i] = num; } cout << "intList before sorting: " << endl; print(intList, 100); cout << endl << endl; quickSort(intList, 100); cout << "intList after quick sort: " << endl; print(intList, 100); cout << endl; system("Pause"); return 0; } template <class elemType> void print(elemType list[], int length) { int count = 0; for(int i = 0; i < length; i++) { cout << setw(5) << list[i]; count++; if(count % 10 == 0) cout << endl; } } template <class elemType> int partition(elemType list[], int left, int right) { elemType pivot; int storeIndex = left; int pivotIndex; pivotIndex= (left + right) / 2; pivot = list[pivotIndex]; swap(list, pivotIndex, right); storeIndex = left; for (int index = left; index <= right - 1; index++) if (list[index] <= pivot) { swap(list, storeIndex, index); storeIndex++; } swap(list, right, storeIndex); return storeIndex; } template <class elemType> void swap(elemType list[], int first, int second) { elemType temp; temp = list[first]; list[first] = list[second]; list[second] = temp; } template <class elemType> void recursionQuick(elemType list[], int first, int last) { int pivotLocation; if (first < last) { pivotLocation = partition(list, first, last); recursionQuick(list, first, pivotLocation - 1); recursionQuick(list, pivotLocation + 1, last); } } template <class elemType> void quickSort(elemType list[], int length) { recursionQuick(list, 0, length -1); }
运行结果如下:
参考资料: (1)Joseph Tomlin的C++ tutorial
(2)wikipedia