前言
1、from size,深度分页或者size特别大的情况,会出deep pagination问题;且es的自保机制max_result_window也会阻预设的查询。
2、scroll虽然能够解决from size带来的问题,但是由于它代表的是某个时刻的snapshot,不适合做实时查询;且由于scroll后接超时时间,频繁地发起scroll请求,也会出现一系列问题。
此时,search_after恰巧能够解决scroll的非实时取值问题。
form&size / scroll / search_after 性能比较
分别分页获取【1 - 10】【49000 - 49010】【 99000 - 99010】范围各10条数据(前提10w条),性能大致是这样:
note:该数据并非博主本人测试,是公司wiki里负责es的同事的实验结果。
由此可知,超级深的分页,使用search_after最为合适了,from&size方式,列表查询已经够了(一般人的操作部分查看第20页之后的数据),导出列表可以使用scroll。
对于三者的原理:
(1) from / size : 该查询的实现原理类似于mysql中的limit,比如查询第10001条数据,那么需要将前面的10000条都拿出来,进行过滤,最终才得到数据。(性能较差,实现简单,适用于少量数据,数据量不超过10w)。
(2) scroll:该查询实现类似于消息消费的机制,首次查询的时候会在内存中保存一个历史快照以及游标(scroll_id),记录当前消息查询的终止位置,下次查询的时候将基于游标进行消费(性能良好,维护成本高,在游标失效前,不会更新数据,不够灵活,一旦游标创建size就不可改变,适用于大量数据导出或者索引重建)
(3) search_after: 性能优秀,类似于优化后的分页查询,历史条件过滤掉数据。
from + size 浅分页
"浅"分页可以理解为简单意义上的分页。它的原理很简单,就是查询前20条数据,然后截断前10条,只返回10-20的数据。这样其实白白浪费了前10条的查询。
GET test_dev/_search { "query": { "bool": { "filter": [ { "term": { "age": 28 } } ] } }, "size": 10, "from": 20, "sort": [ { "timestamp": { "order": "desc" }, "_id": { "order": "desc" } } ] }
其中,from定义了目标数据的偏移值,size定义当前返回的数目。默认from为0,size为10,即所有的查询默认仅仅返回前10条数据。
在这里有必要了解一下from/size的原理:
因为es是基于分片的,假设有5个分片,from=100,size=10。则会根据排序规则从5个分片中各取回100条数据数据,然后汇总成500条数据后选择最后面的10条数据。
做过测试,越往后的分页,执行的效率越低。总体上会随着from的增加,消耗时间也会增加。而且数据量越大,就越明显!
scroll 深分页
from+size查询在10000-50000条数据(1000到5000页)以内的时候还是可以的,但是如果数据过多的话,就会出现深分页问题。
为了解决上面的问题,elasticsearch提出了一个scroll滚动的方式。
scroll 类似于sql中的cursor,使用scroll,每次只能获取一页的内容,然后会返回一个scroll_id。根据返回的这个scroll_id可以不断地获取下一页的内容,所以scroll并不适用于有跳页的情景。
GET test_dev/_search?scroll=5m { "query": { "bool": { "filter": [ { "term": { "age": 28 } } ] } }, "size": 10, "from": 0, "sort": [ { "timestamp": { "order": "desc" }, "_id": { "order": "desc" } } ] }
scroll=5m表示设置scroll_id保留5分钟可用。
使用scroll必须要将from设置为0。
size决定后面每次调用_search搜索返回的数量
然后我们可以通过数据返回的_scroll_id读取下一页内容,每次请求将会读取下10条数据,直到数据读取完毕或者scroll_id保留时间截止:
GET _search/scroll { "scroll_id": "DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAJZ9Fnk1d......", "scroll": "5m" }
注意:请求的接口不再使用索引名了,而是 _search/scroll,其中GET和POST方法都可以使用。
scroll删除
根据官方文档的说法,scroll的搜索上下文会在scroll的保留时间截止后自动清除,但是我们知道scroll是非常消耗资源的,所以一个建议就是当不需要了scroll数据的时候,尽可能快的把scroll_id显式删除掉。
清除指定的scroll_id:
DELETE _search/scroll/DnF1ZXJ5VGhlbkZldGNo.....
清除所有的scroll:
DELETE _search/scroll/_all
search_after 深分页
scroll 的方式,官方的建议不用于实时的请求(一般用于数据导出),因为每一个 scroll_id 不仅会占用大量的资源,而且会生成历史快照,对于数据的变更不会反映到快照上。
search_after 分页的方式是根据上一页的最后一条数据来确定下一页的位置,同时在分页请求的过程中,如果有索引数据的增删改查,这些变更也会实时的反映到游标上。但是需要注意,因为每一页的数据依赖于上一页最后一条数据,所以无法跳页请求。
为了找到每一页最后一条数据,每个文档必须有一个全局唯一值,官方推荐使用 _uid 作为全局唯一值,其实使用业务层的 id 也可以。
GET test_dev/_search { "query": { "bool": { "filter": [ { "term": { "age": 28 } } ] } }, "size": 20, "from": 0, "sort": [ { "timestamp": { "order": "desc" }, "_id": { "order": "desc" } } ] }
- 使用search_after必须要设置from=0。
- 这里我使用timestamp和_id作为唯一值排序。
- 我们在返回的最后一条数据里拿到sort属性的值传入到search_after。
使用sort返回的值搜索下一页:
GET test_dev/_search { "query": { "bool": { "filter": [ { "term": { "age": 28 } } ] } }, "size": 10, "from": 0, "search_after": [ 1541495312521, "d0xH6GYBBtbwbQSP0j1A" ], "sort": [ { "timestamp": { "order": "desc" }, "_id": { "order": "desc" } } ] }