UVA-10305 Ordering Tasks (拓扑排序)

题目大意:给出n个点,m条关系,按关系的从小到大排序。

题目分析:拓扑排序的模板题,套模板。

kahn算法:

伪代码:

Kahn算法:

摘一段*上关于Kahn算法的伪码描述:

L← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty
do
    remove a node n from S
    insert n into L
    foreach node m with an edge
e from nto m do
        remove edge e from thegraph
        ifm has no other incoming edges
then
            insert m into S
if graph has edges
then
    return error (graph has at least onecycle)
else
    return L (a topologically sortedorder)

维护一个入度为0的点的集合S,一个初始为空的集合L,L存放排好序的序列。将集合S中的一个点加入集合L后,在S中删除该点并破坏所有从该点出发的边,若被破坏的边的另一端点的入度为0,则加入S,一直处理到S为空。若仍有边存在,则存在环路,反之,集合L中的元素便是按拓扑序排放的。时间复杂度为O(E+V)。

代码如下:

# include<iostream>
# include<cstdio>
# include<queue>
# include<vector>
# include<cstring>
# include<algorithm>
using namespace std; int mp[105][105],n,m,d[105];
vector<int>l;
queue<int>q; int judge(int u)
{
int cnt=0;
for(int i=1;i<=n;++i)
if(mp[i][u])
++cnt;
return cnt;
} void solve()
{
l.clear();
while(!q.empty()){
int u=q.front();
q.pop();
l.push_back(u); for(int i=1;i<=n;++i){
if(mp[u][i]){
mp[u][i]=0;
--d[i];
if(d[i]==0)
q.push(i);
}
}
}
for(int i=0;i<n;++i)
printf("%d%c",l[i],(i==n-1)?'\n':' ');
} int main()
{
int a,b;
while(scanf("%d%d",&n,&m)&&(n+m))
{
memset(mp,0,sizeof(mp));
while(m--){
scanf("%d%d",&a,&b);
mp[a][b]=1;
} while(!q.empty())
q.pop();
for(int i=1;i<=n;++i){
d[i]=judge(i);
if(d[i]==0)
q.push(i);
}
solve();
}
return 0;
}

  

基于dfs的拓扑排序:

同样摘录一段*上的伪码:

L ← Empty list that will contain the sorted nodes
S ← Set of all nodes with no outgoing edges
for each node n in S
do
    visit(n)
function visit(node n)
    if n has not been visited yet
then
        mark n as visited
        for each node m with an edgefrom m to ndo
            visit(m)
        add n to L

维护一个出度为0的点的集合S,一个初始为空的集合L,L存放排好序的序列。对于集合S中的一个点e,先将所有应该排在e前面的点放到集合L之后,再将点e放入集合L。时间复杂度为O(E+V)。

代码如下:

# include<iostream>
# include<cstdio>
# include<queue>
# include<vector>
# include<cstring>
# include<algorithm>
using namespace std; vector<int>l;
queue<int>q;
int n,m,mp[105][105],mark[105]; bool judge(int u)
{
for(int i=1;i<=n;++i)
if(mp[u][i])
return false;
return true;
} void visit(int u)
{
if(!mark[u]){
mark[u]=1;
for(int i=1;i<=n;++i)
if(mp[i][u])
visit(i);
l.push_back(u);
}
} void solve()
{
l.clear();
memset(mark,0,sizeof(mark));
while(!q.empty()){
int u=q.front();
q.pop();
visit(u);
}
for(int i=0;i<n;++i)
printf("%d%c",l[i],(i==n-1)?'\n':' ');
} int main()
{
int a,b;
while(scanf("%d%d",&n,&m)&&(n+m))
{
memset(mp,0,sizeof(mp));
while(m--)
{
scanf("%d%d",&a,&b);
mp[a][b]=1;
} while(!q.empty())
q.pop();
for(int i=1;i<=n;++i){
if(judge(i))
q.push(i);
}
solve();
}
return 0;
}

  

上一篇:UVA10305 拓扑排序


下一篇:举一反三 willDisplayCell在UICollectionView中的一些应用