转载请说明出处 http://blog.csdn.net/u013491262/article/details/37344193 点击打开链接
step1 : 理论学习,资料随便找
step2: 源码分析,资料随便找
step3; 简单实践
一、生成数据
为了将问题简化,特意生成训练集 tain_data.txt
类1 : y<=x-1 ,
类2 : y>= x+1 .
个100组数据,特征为2维。
测试集100组数据test_data.txt
int main(){ freopen("tain_data.txt" , "w" , stdout) ; srand( (unsigned int) time(NULL) ) ; int n = 0 , x , y ; while(n < 100){ x = rand() % 10 + 1 ; y = rand() % 10 + 1 ; if(y <= x - 1) printf("-1 %d %d\n" , x, y) ; else continue ; n++ ; } n = 0 ; while(n < 100){ x = rand() % 10 + 1 ; y = rand() % 10 + 1 ; if(y >= x + 1) printf("1 %d %d\n" , x, y) ; else continue ; n++ ; } freopen("test_data.txt" , "w" , stdout) ; n = 0 ; while(n < 100){ x = rand() % 10 + 1 ; y = rand() % 10 + 1 ; if(y <= x - 1) printf("-1 %d %d\n" , x, y) ; else if(y >= x + 1) printf("1 %d %d\n" , x, y) ; else continue ; n++ ; } return 0; }
二: 实验
引用《交大源码分析》
引用《交大源码分析》
代码部分: 此代码难度系数很小,没有细讲必要。
#include "svm.h" using namespace std ; const int feature_size = 2 ; const int train_size = 200 ; svm_problem prob ; void init_svm_problem(){ prob.l = train_size ; prob.y = new double[train_size] ; prob.x = new svm_node* [train_size] ; svm_node *x_space = new svm_node[train_size*(1+feature_size)] ; ifstream in ; in.open("tain_data.txt") ; double value , lb ; for(int i = 0 ; i < train_size ; i++){ in>>lb ; //prob.y[i] = lb ; if(i < train_size/2) prob.y[i] = 1 ; else prob.y[i] = -1 ; for(int j = 0 ; j < feature_size ; j++){ in>>value ; if(value != 0.0){ x_space[i*(feature_size+1) + j].index = j + 1 ; x_space[i*(feature_size+1) + j].value = value ; } } x_space[i*(feature_size+1) + feature_size].index = -1 ; prob.x[i] = &x_space[i*(feature_size+1)] ; } in.close() ; } svm_parameter param ; void init_svm_parameter(){ param.svm_type = C_SVC; param.kernel_type = RBF; param.degree = 3; param.gamma = 0.0001; param.coef0 = 0; param.nu = 0.5; param.cache_size = 100; param.C = 11; param.eps = 1e-5; param.p = 0.1; param.shrinking = 1; param.probability = 0; param.nr_weight = 0; param.weight_label = NULL; param.weight = NULL; } const int test_size = 100 ; double predict_lable[test_size] ; double test_lable[test_size] ; int main(){ init_svm_problem() ; init_svm_parameter() ; if(param.gamma == 0) param.gamma = 0.5 ; svm_model* model = svm_train(&prob , ¶m) ; ifstream in ; in.open("test_data.txt") ; svm_node *test = new svm_node[3] ; for(int i = 0 ; i < test_size ; i++){ double value ; in>>test_lable[i] ; for(int j = 0 ; j < feature_size ; j++){ in>>value ; if(value != 0.0){ test[j].index = j + 1 ; test[j].value = value ; } } test[feature_size].index = -1 ; predict_lable[i] = svm_predict(model , test) ; } int yes = 0 ; for(int i = 0 ; i < test_size ; i++){ // cout<<test_lable[i] <<" , "<<predict_lable[i]<<endl ; if(test_lable[i] == predict_lable[i]) yes++ ; } cout<<yes<<endl ; printf("%.2lf%%\n" , (0.0+yes)/test_size) ; in.close() ; return 0 ; }
结果
效果不好,没有寻找参数。
待续文。
-----------------------------
问题解决,由于文件单词拼写错误。
--------------------------------------测试数据-----------------------------------------------------------
tain_data.txt
-1 6 2 -1 8 1 -1 9 2 -1 2 1 -1 8 3 -1 5 2 -1 10 2 -1 8 5 -1 2 1 -1 7 6 -1 7 2 -1 8 3 -1 9 8 -1 4 2 -1 4 2 -1 9 8 -1 10 1 -1 10 7 -1 10 2 -1 8 1 -1 9 4 -1 10 1 -1 6 2 -1 8 2 -1 7 5 -1 8 1 -1 5 1 -1 5 2 -1 10 1 -1 6 3 -1 7 6 -1 10 3 -1 8 4 -1 10 5 -1 10 8 -1 7 1 -1 10 2 -1 5 3 -1 9 8 -1 10 1 -1 10 9 -1 7 5 -1 9 7 -1 6 1 -1 8 6 -1 5 1 -1 7 1 -1 9 3 -1 9 1 -1 7 5 -1 5 1 -1 10 9 -1 4 1 -1 7 5 -1 4 2 -1 9 4 -1 7 2 -1 9 5 -1 10 6 -1 10 4 -1 5 1 -1 8 2 -1 7 4 -1 5 3 -1 5 3 -1 7 2 -1 10 6 -1 10 7 -1 8 2 -1 10 3 -1 10 4 -1 10 4 -1 8 7 -1 6 1 -1 3 2 -1 9 3 -1 5 1 -1 10 9 -1 9 2 -1 5 4 -1 10 4 -1 9 7 -1 4 3 -1 4 1 -1 10 7 -1 5 1 -1 9 3 -1 6 1 -1 6 1 -1 3 1 -1 6 1 -1 8 2 -1 8 7 -1 10 6 -1 8 5 -1 7 1 -1 7 6 -1 9 2 -1 8 5 -1 9 2 1 5 10 1 5 7 1 4 10 1 4 9 1 9 10 1 2 4 1 2 8 1 3 7 1 7 8 1 9 10 1 1 5 1 5 9 1 4 5 1 4 8 1 6 7 1 2 8 1 2 10 1 4 5 1 6 8 1 1 9 1 4 6 1 4 5 1 1 9 1 2 4 1 1 9 1 5 8 1 3 7 1 6 7 1 4 10 1 3 7 1 4 6 1 4 9 1 3 6 1 1 4 1 5 9 1 1 6 1 2 5 1 4 6 1 1 9 1 4 8 1 9 10 1 7 9 1 2 3 1 4 9 1 1 4 1 3 8 1 4 9 1 4 8 1 8 10 1 9 10 1 6 8 1 1 10 1 2 3 1 1 9 1 1 8 1 8 10 1 3 7 1 2 7 1 1 10 1 5 7 1 1 10 1 4 7 1 3 5 1 6 9 1 2 7 1 2 5 1 1 5 1 1 4 1 5 6 1 1 6 1 3 7 1 5 9 1 6 10 1 1 9 1 3 10 1 6 10 1 2 7 1 4 7 1 2 7 1 6 7 1 2 8 1 7 9 1 1 7 1 4 8 1 1 5 1 4 7 1 3 6 1 2 4 1 4 9 1 5 9 1 3 10 1 7 9 1 3 7 1 1 10 1 4 10 1 6 8 1 3 4 1 6 9 1 3 7 1 3 5
test_data.txt
1 2 10 1 1 7 -1 7 3 1 1 6 -1 8 1 1 4 8 -1 9 6 1 3 10 -1 4 2 1 1 9 -1 8 5 -1 9 4 -1 9 3 -1 8 3 -1 8 6 1 1 5 1 1 3 1 1 5 -1 6 3 -1 9 5 -1 8 2 1 2 10 1 3 6 -1 9 8 1 1 4 1 5 6 -1 9 8 -1 8 2 1 3 6 1 5 6 -1 8 4 1 6 7 -1 9 3 1 9 10 1 3 5 1 1 2 -1 10 7 -1 8 6 1 4 6 -1 9 3 -1 8 2 1 2 8 -1 2 1 -1 9 7 -1 8 3 -1 9 3 1 1 2 -1 8 5 -1 7 4 1 3 10 1 3 8 -1 10 7 1 3 6 1 5 6 -1 6 2 1 1 6 1 1 7 1 5 6 -1 9 3 1 3 10 1 4 7 -1 8 2 -1 6 2 -1 7 6 -1 9 1 -1 10 5 1 3 7 -1 7 2 -1 7 2 -1 10 4 1 2 8 -1 10 2 1 3 8 -1 7 1 1 5 10 -1 5 4 -1 3 1 -1 10 1 1 6 10 1 8 10 -1 7 3 1 1 8 1 1 10 1 3 7 -1 2 1 1 2 7 -1 7 4 -1 6 5 1 4 8 1 2 7 1 5 7 1 7 10 -1 10 9 -1 5 1 -1 10 1 -1 7 4 1 3 4 -1 9 2 -1 8 7 1 2 6