给定一颗树,树的每个结点都有权值,
有q个询问,每个询问是 u v k ,表示u到v路径上第k小的权值是多少。
每个结点所表示的线段树,是父亲结点的线段树添加该结点的权值之后形成的新的线段树
c[root] 表示根为root的子树添加了多少个结点。
那么c[lson[u]] + c[lson[v]] - c[lson[lca(u,v)]] - c[lson[fa[lca(u,v)]]] >=k ,那么说明左子树添加了k个以上的结点,说明第k小的值在左子树
否则就在右子树。
//
// main.cpp
// 函数式线段树
//
// Created by whoami on 15/9/21.
// Copyright (c) 2015年 whoami. All rights reserved.
// #include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
using namespace std;
const int N = + ;
const int M = ;
int t[N],lson[N],rson[N],c[N],total;
int a[M],b[M];
int n,m,q;
int head[M],nxt[M],to[M],e;
int dfs_clock,iid[M];
int fa[M][],depth[M];
void addEdge(int u, int v){
to[e] = v;
nxt[e] = head[u];
head[u] = e++;
} //离散化,离散化后有多少个点,线段树的区间就是多大
void initHash(){
sort(b+,b+n+);
m = unique(b+,b+n+) - b - ;
}
int hs(int x){
return lower_bound(b+,b+m+,x)-b;
} int build(int l, int r){
int root = total++;
c[root] = ;
if(l!=r){
int mid = (l+r)>>;
lson[root] = build(l,mid);
rson[root] = build(mid+,r);
}
return root;
}
int update(int root, int pos, int val){
int newRoot = total++,tmp = newRoot;
c[newRoot] = c[root] + val;
int l =, r = m;
while(l<r){
int mid = (l+r)>>;
if(pos<=mid){
r = mid;
lson[newRoot] = total++;
rson[newRoot] = rson[root];
newRoot = lson[newRoot];
root = lson[root];
}
else{
l = mid + ;
lson[newRoot] = lson[root];
rson[newRoot] = total++;
newRoot = rson[newRoot];
root = rson[root];
}
c[newRoot] = c[root] + val;
}
return tmp;
}
void dfs(int u, int f, int dep){
fa[u][] = f;
depth[u] = dep; for(int i=head[u]; i+;i=nxt[i]){
int v = to[i];
if(v==f)continue;
t[++dfs_clock] = update(iid[u],hs(a[v]),);
iid[v] = t[dfs_clock];
dfs(v,u,dep+);
}
} int query(int urt, int vrt, int lcart, int frt, int k){
int l = , r = m;
//当l==r,即区间的长度只有1时,那么该区间所对应的值就是第k小了
while(l<r){
int mid = (l+r)>>;
if(c[lson[urt]] + c[lson[vrt]] - c[lson[frt]]-c[lson[lcart]]>=k){
r = mid;
urt = lson[urt];
vrt = lson[vrt];
frt = lson[frt];
lcart = lson[lcart];
}
else
{
l = mid+;
k -= c[lson[urt]] + c[lson[vrt]] - c[lson[frt]]-c[lson[lcart]];
urt = rson[urt];
vrt = rson[vrt];
frt = rson[frt];
lcart = rson[lcart];
}
}
return l;
}
void init() {
for(int k=;k+<; ++k){
for(int v = ;v<=n;++v){
if(fa[v][k]<)
fa[v][k+] = -;
else
fa[v][k+] = fa[fa[v][k]][k];
}
}
} int lca(int u, int v){
if(depth[u] < depth[v])
swap(u,v); int tmp = depth[u] - depth[v];
for(int i=;i>=;--i)
if(tmp &(<<i))
u = fa[u][i];
if(u==v) return u;
for(int i=;i>=;--i){
if(fa[u][i]!=fa[v][i]){
u = fa[u][i];
v = fa[v][i];
}
}
return fa[u][]; }
int main(int argc, const char * argv[]) {
int u,v,k;
while(scanf("%d%d",&n,&q)!=EOF){
total = dfs_clock = ;
for(int i=;i<=n;++i){
scanf("%d",&a[i]);
b[i] = a[i];
}
memset(head,-,sizeof(head));
for(int i=;i<n;++i){
scanf("%d%d",&u,&v);
addEdge(u,v);
addEdge(v,u);
}
addEdge(,);
addEdge(,);
initHash();
iid[] = t[] = build(,m);
memset(fa,-,sizeof(fa));
dfs(,,); init();
while(q--){
scanf("%d%d%d",&u,&v,&k);
int lc = lca(u,v);
int f = fa[lc][];
printf("%d\n",b[query(iid[u],iid[v],iid[lc],iid[f],k)]);
}
} return ;
}