numpy、scipy、pandas、matplotlib的读书报告:
Numpy:
来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多,本身是由C语言开发。这个是很基础的扩展,其余的扩展都是以此为基础。数据结构为ndarray,一般有三种方式来创建。
Pandas:
基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的。Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。最具有统计意味的工具包,某些方面优于R软件。数据结构有一维的Series,二维的DataFrame(类似于Excel或者SQL中的表,如果深入学习,会发现Pandas和SQL相似的地方很多,例如merge函数),三维的Panel(Pan(el) + da(ta) + s,知道名字的由来了吧)。
学习Pandas你要掌握的是:
1.汇总和计算描述统计,处理缺失数据 ,层次化索引
2.清理、转换、合并、重塑、GroupBy技术
3.日期和时间数据类型及工具(日期处理方便地飞起)
Matplotlib:
Python中最著名的绘图系统,很多其他的绘图例如seaborn(针对pandas绘图而来)也是由其封装而成。
绘制的图形可以大致按照ggplot的颜色显示,但是还是感觉很鸡肋。但是matplotlib的复杂给其带来了很强的定制性。其具有面向对象的方式及Pyplot的经典高层封装。
需要掌握的是:
1.散点图,折线图,条形图,直方图,饼状图,箱形图的绘制。
2.绘图的三大系统:pyplot,pylab(不推荐),面向对象
3.坐标轴的调整,添加文字注释,区域填充,及特殊图形patches的使用
4.金融的同学注意的是:可以直接调用Yahoo财经数据绘图
Scipy:
方便、易于使用、专为科学和工程设计的Python工具包.它包括统计,优化,整合,线性代数模块,傅里叶变换,信号和图像处理,常微分方程求解器等等。基本可以代替Matlab,但是使用的话和数据处理的关系不大,数学系,或者工程系相对用的多一些。
解决一些具体问题(Pandas)
import pandas as pda
# 使用pandas生成数据
# Series代表某一串数据 index指定行索引名称,Series索引默认从零开始
# DataFrame代表行列整合出来的数据框,columns 指定列名
a = pda.Series([8, 9, 2, 1], index=['one', 'two', 'three', 'four'])
# 以列表的格式创建数据框
b = pda.DataFrame([[5,6,2,3],[3,5,1,4],[7,9,3,5]], columns=['one', 'two', 'three', 'four'],index=['one', 'two', 'three'])
# 以字典的格式创建数据框
c = pda.DataFrame({
'one':4, # 会自动补全
'two':[6,2,3],
'three':list(str(982))
})
# b.head(行数)# 默认取前5行头
# b.tail(行数)# 默认取后5行尾
# b.describe() 统计数据的情况 count mean std min 25% max
e = b.head()
f = b.describe()
# 数据的转置,及行变成列,列变成行
g = b.T
Matplotlib图像处理
import matplotlib.pyplot as plt
import numpy as np
# 生成测试数据
x = np.linspace(-3, 3, 50)
y1 = 2*x + 1
y2 = x**2
# 生成画布
plt.figure(facecolor='grey')
# figure()中的属性
'''
**num=3**
画出来图的标题就是‘Figure 3’
如果传一个str,eg. num='折线图' 图的标题就是‘折线图’
**figsize=(8, 4)**
指定绘图对象的宽度和高度,单位为英寸,一英寸=80px
**facecolor='blue'**
背景颜色,默认是白色
也可以以‘#+6位16进制数’给出,eg. '#00ff00'
**edgecolor='red'**
边框颜色,默认是白色
'''
# 画图
plt.plot(x, y1, linestyle='--')
plt.plot(x, y2)
# plot的属性
'''
**linewidth=3**
线条宽度
也可以写作 lw=3
**markersize='20'**
线上标记的尺寸
注意要传字符串类型的值
**marker='2'**
线上的标记
============= ===============================
character description
============= ===============================
``'.'`` point marker
``','`` pixel marker
``'o'`` circle marker
``'v'`` triangle_down marker
``'^'`` triangle_up marker
``'<'`` triangle_left marker
``'>'`` triangle_right marker
``'1'`` tri_down marker
``'2'`` tri_up marker
``'3'`` tri_left marker
``'4'`` tri_right marker
``'s'`` square marker
``'p'`` pentagon marker
``'*'`` star marker
``'h'`` hexagon1 marker
``'H'`` hexagon2 marker
``'+'`` plus marker
``'x'`` x marker
``'D'`` diamond marker
``'d'`` thin_diamond marker
``'|'`` vline marker
``'_'`` hline marker
============= ===============================
**linestyle=':'**
线的类型
============= ===============================
character description
============= ===============================
``'-'`` solid line style
``'--'`` dashed line style
``'-.'`` dash-dot line style
``':'`` dotted line style
============= ===============================
也可表示为linestyle='dashed'
**colors='r'**
The supported color abbreviations are the single letter codes
============= ===============================
character color
============= ===============================
``'b'`` blue
``'g'`` green
``'r'`` red
``'c'`` cyan
``'m'`` magenta
``'y'`` yellow
``'k'`` black
``'w'`` white
============= ===============================
也可用'#ff0000'这种形式表示
'''
# 必须要有这一句画图才能显示
plt.show()