DAY-21 目标检测/ 图像分割/ 医学影像/ 目标跟踪/ 人脸识别的相关综述

DAY-21 目标检测/ 图像分割/ 医学影像/ 目标跟踪/ 人脸识别的相关综述

原文链接:https://bbs.cvmart.net/articles/4138#reply4821

  • 目标检测综述

    • Deep Domain Adaptive Object Detection: a Survey(深度域适应目标检测)
    • Foreground-Background Imbalance Problem in Deep Object Detectors: A Review(深度目标检测器中前景-背景不平衡问题综述)
    • A Review and Comparative Study on Probabilistic Object Detection in Autonomous Driving(自动驾驶中的概率目标检测方法综述与比较研究)
    • An Overview Of 3D Object Detection(三维目标检测技术综述)
    • Camouflaged Object Detection and Tracking: A Survey(伪装目标检测与跟踪研究综述)
  • 图像分割

    • Image Segmentation Using Deep Learning: A Survey(使用深度学习进行图像分割:综述)
    • A Survey on Deep Learning Methods for Semantic Image Segmentation in Real-Time(深度学习实时语义图像分割方法综述)
    • Unsupervised Domain Adaptation in Semantic Segmentation: a Review(语义分割中的无监督自适应研究进展)
    • A survey of loss functions for semantic segmentation(语义分割损失函数综述)
    • A Survey on Instance Segmentation: State of the art(实例分割技术综述)
  • 医学影像

    • A Comprehensive Review for Breast Histopathology Image Analysis Using Classical and Deep Neural Networks(使用经典和深层神经网络进行的乳房组织病理学图像分析的全面综述)
    • Medical Image Registration Using Deep Neural Networks: A Comprehensive Review(使用深度神经网络的医学图像配准:全面综述)
    • Towards Automatic Threat Detection: A Survey of Advances of Deep Learning within X-ray Security Imaging(迈向自动威胁检测:X射线安全成像中深度学习进展综述)
    • Deep neural network models for computational histopathology: A survey(用于计算组织病理学的深度神经网络模型综述)
    • A scoping review of transfer learning research on medical image analysis using ImageNet(利用ImageNet进行医学图像分析的迁移学习研究述评)
    • Deep Learning Based Brain Tumor Segmentation: A Survey(基于深度学习的脑肿瘤分割研究综述)
    • A Survey on Deep Learning for Neuroimaging-based Brain Disorder Analysis(基于神经成像的脑疾病分析深度学习研究综述)
    • A review: Deep learning for medical image segmentation using multi-modality fusion(多模态融合用于医学图像分割的深度学习综述)
    • Medical Instrument Detection in Ultrasound-Guided Interventions: A Review(超声引导治疗的医疗器械检测)
    • A Survey on Incorporating Domain Knowledge into Deep Learning for Medical Image Analysis(域知识驱动的医学图像深度学习研究综述)
    • A Review on End-To-End Methods for Brain Tumor Segmentation and Overall Survival Prediction(脑肿瘤的端到端分割和总体生存预测方法综述)
    • Machine learning for COVID-19 detection and prognostication using chest radiographs and CT scans: a systematic methodological review(利用胸片和CT扫描进行冠状病毒检测和预测的机器学习:一项系统方法学综述)
    • A Review on Deep Learning Techniques for the Diagnosis of Novel Coronavirus (COVID-19)(新型冠状病毒(冠状病毒)诊断的深度学习技术综述)
    • A Comprehensive Review for MRF and CRF Approaches in Pathology Image Analysis(病理图像分析中MRF和CRF方法综述)
    • Medical Image Segmentation Using Deep Learning: A Survey(基于深度学习的医学图像分割研究综述)
    • A Survey on Deep Learning and Explainability for Automatic Image-based Medical Report Generation(基于图像的医学报告自动生成的深度学习和可解释性研究综述)
    • High-level Prior-based Loss Functions for Medical Image Segmentation: A Survey(基于高层先验损失函数的医学图像分割综述)
    • Deep Learning in Computer-Aided Diagnosis and Treatment of Tumors: A Survey(计算机辅助肿瘤诊疗中的深度学习研究综述)
    • Multiple Sclerosis Lesion Segmentation – A Survey of Supervised CNN-Based Methods(多发性硬化病变分割–基于有监督CNN的方法综述)
    • 3D Bounding Box Detection in Volumetric Medical Image Data: A Systematic Literature Review(体医学图像数据中三维包围盒检测的系统文献综述)
    • Learning-Based Algorithms for Vessel Tracking: A Review(基于学习的血管跟踪算法综述)
  • 目标跟踪

    • Correlation Filter for UAV-Based Aerial Tracking: A Review and Experimental Evaluation(相关过滤无人机空中跟踪技术综述与实验评估)
    • Multi-modal Visual Tracking: Review and Experimental Comparison(多模态视觉跟踪:综述与实验比较)
  • 人脸识别

    • The Elements of End-to-end Deep Face Recognition: A Survey of Recent Advances(端到端深度人脸识别原理:最新进展综述)
    • Face Image Quality Assessment: A Literature Survey(人脸图像质量评价的文献综述)
    • The Use of AI for Thermal Emotion Recognition: A Review of Problems and Limitations in Standard Design and Data(人工智能在热情感识别中的应用:标准设计和数据中的问题和限制综述)
    • A Survey On Anti-Spoofing Methods For Face Recognition with RGB Cameras of Generic Consumer Devices(通用消费类设备RGB摄像头人脸识别反欺骗方法综述)
    • An Overview of Facial Micro-Expression Analysis: Data, Methodology and Challenge(人脸微表情分析综述:数据、方法学与挑战)
    • Survey on 3D face reconstruction from uncalibrated images(基于未标定图像的三维人脸重建技术综述)
    • DeepFakes and Beyond: A Survey of Face Manipulation and Fake Detection(DeepFakes:面部操纵和伪造检测综述)
    • Deep Learning Based Single Sample Per Person Face Recognition: A Survey(基于深度学习的单样本人脸识别研究综述)
    • A survey of face recognition techniques under occlusion(遮挡下的人脸识别技术综述)
    • Biometric Quality: Review and Application to Face Recognition with FaceQnet(生物特征质量:FaceQnet在人脸识别中的应用)
    • Threat of Adversarial Attacks on Face Recognition: A Comprehensive Survey(对抗攻击对人脸识别的威胁:综述)
    • Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review(跨种族人脸反欺骗识别挑战:综述)
    • The Creation and Detection of Deepfakes: A Survey(深度伪装的产生与检测:综述)
上一篇:Spring DI模式 小例子


下一篇:GitLab的Code Review教程