跳槽字节跳动,集群日志收集架构ELK

前言

前几篇我们介绍了项目中如何使用logback组件记录系统的日志情况;现在我们的系统都是分布式的,集群化的,那就代表着**我们的应用会分布在很多服务器上面;**那应用的日志文件就会分布在各个服务器上面。

问题

突然有一天我们系统出现了问题,我们第一时间想到的是先要判断到底哪个服务出现了问题;我们的技术人员就连接生产环境服务器,查看服务器上面的应用日志。

那么多的服务器,技术人员这个时候就会很抓狂,一个个的查看分析日志,是比较愚蠢的方法。那有什么好的方式呢?今天老顾给大家介绍常规的方案。

ELK方案

ELK 是elastic公司提供的一套完整的日志收集以及展示的解决方案,是三个产品的首字母缩写,分别是ElasticSearch、Logstash 和 Kibana。

ElasticSearch简称ES,它是一个实时的分布式搜索和分析引擎,它可以用于全文搜索,结构化搜索以及分析。它是一个建立在全文搜索引擎 Apache Lucene 基础上的搜索引擎,使用 Java 语言编写。

Logstash是一个具有实时传输能力的数据收集引擎,用来进行数据收集(如:读取文本文件)、解析,并将数据发送给ES

Kibana为 Elasticsearch 提供了分析和可视化的 Web 平台。它可以在 Elasticsearch 的索引中查找,交互数据,并生成各种维度表格、图形。

这三款软件都是开源软件,通常配合使用,而且又先后归于Elastic.co公司名下

跳槽字节跳动,集群日志收集架构ELK

ELK的用途

传统意义上,ELK是作为替代Splunk的一个开源解决方案。Splunk 是日志分析领域的领导者。日志分析并不仅仅包括系统产生的错误日志,异常,也包括业务逻辑,或者任何文本类的分析。而基于日志的分析,能够在其上产生非常多的解决方案,譬如:

1.问题排查。我们常说,运维和开发这一辈子无非就是和问题在战斗,运维和开发能够快速的定位问题,甚至防微杜渐,把问题杀死在摇篮里。日志分析技术显然问题排查的基石。

2.监控和预警。 日志,监控,预警是相辅相成的。基于日志的监控,预警使得运维有自己的机械战队,大大节省人力以及延长运维的寿命。

3.关联事件。多个数据源产生的日志进行联动分析,通过某种分析算法,就能够解决生活中各个问题。比如金融里的风险欺诈等。

4.数据分析。 这个对于数据分析师,还有算法工程师都是有所裨益的。

ElasticSearch介绍

ElasticSearch是一个实时的分布式搜索和分析引擎,采用java语言编写,现在的最新版本已经ElasticSearch7.5.x,他的主要特点如下:

实时搜索、实时分析
分布式架构、实时文件存储
文档导向,所有对象都是文档
高可用,易扩展,支持集群,分片与复制
接口友好,支持json

Logstash介绍

logstash是一款轻量级的、开源的日志收集处理框架,它可以方便的把分散的、多样化的日志收集起来,并进行自定义的过滤分析处理,然后输出到指定的位置(如:es)。

Logstash工作原理

跳槽字节跳动,集群日志收集架构ELK

如上图,Logstash的数据处理过程主要包括:Inputs, Filters, Outputs 三部分, 另外在Inputs和Outputs中可以使用Codecs对数据格式进行处理。这四个部分均以插件形式存在,用户通过定义pipeline配置文件,设置需要使用的input,filter,output, codec插件,以实现特定的数据采集,数据处理,数据输出等功能

(1)Inputs:用于从数据源获取数据,常见的插件如file, syslog, redis, beats等
(2)Filters:用于处理数据如格式转换,数据派生等,常见的插件如grok, mutate, drop, clone, geoip等
(3)Outputs:用于数据输出,常见的插件如elastcisearch,file, graphite, statsd等
(4)Codecs:Codecs不是一个单独的流程,而是在输入和输出等插件中用于数据转换的模块,用于对数据进行编码处理,常见的插件如json,multiline

Kibana介绍

Kibana是一个开源的分析和可视化平台,设计用于和Elasticsearch一起工作。

可以用Kibana来搜索,查看,并存储在Elasticsearch索引中的数据进行交互。

可以轻松地执行高级数据分析,并且以各种图标、表格和地图的形式可视化数据

Kibana使得理解大量数据变得很容易。它简单的、基于浏览器的界面使你能够快速创建和共享动态仪表板,实时显示Elasticsearch查询的变化。

什么是Filebeat

虽然我们的logstash功能已经非常强大了,里面包含采集,过滤,转换等功能;正因为有很多的功能,导致了它比较耗资源。其实在我们应用服务器端只需要采集日志功能就行了,没有必要logstash其他的功能;所以Filebeat等beat组件就出现了,它们比较小巧,而且不耗资源,也完全够用。

Filebeat是一个轻量级的托运人,用于转发和集中日志数据。Filebeat作为代理安装在服务器上,监视您指定的日志文件或位置,收集日志事件,并将它们转发到Elasticsearch或 Logstash进行索引。

Filebeat的工作原理:启动Filebeat时,它会启动一个或多个输入,这些输入将查找您为日志数据指定的位置。对于Filebeat找到的每个日志,Filebeat启动一个收集器。每个收集器为新内容读取单个日志,并将新日志数据发送到libbeat,libbeat聚合事件并将聚合数据发送到您为Filebeat配置的输出。

官方流程图如下:跳槽字节跳动,集群日志收集架构ELK

ELK常见架构

最简单的ELK应用架构

跳槽字节跳动,集群日志收集架构ELK

上面架构是简单粗暴的架构,这种架构对数据源服务器(即应用服务器)性能影响较大,因为Logsash是需要安装和运行在需要收集的数据源服务器(即应用服务器)中,然后将收集到的数据实时进行过滤,过滤环节是很耗时间和资源的,过滤完成后才传输到ES中。下面是优化后的架构图:跳槽字节跳动,集群日志收集架构ELK

用filebeat采集日志有效降低了收集日志对业务系统的系统资源的消耗。再通过logstash服务器可以过滤,转换日志。这样即满足了日志的过滤转换,也保障了业务系统的性能。

当然上面的架构中,是支持集群的

如果日志文件量特别大,以及收集的服务器日志比较多;这样架构中需加入消息中间件做一下缓冲跳槽字节跳动,集群日志收集架构ELK

此架构适合大型集群,海量数据的业务场景,消息队列kafka集群架构有效保障了收集数据的安全性和稳定性,而后端logstash和es均采用了集群模式搭建,从整体上提高了ELK的系统的高效性,扩展性和吞吐量。

总结

今天老顾介绍了ELK的基本介绍,带领了我们小伙伴们进入了 Elastic Stack技术栈,也开启了小伙伴们大数据技术的大门。上面介绍的几个技术组件,延展下去会有很多技术点。老顾下面会一一介绍分享给大家,小伙伴们也可以自行上网学习。谢谢!!!

最后我们该如何学习?

1、看视频进行系统学习

这几年的Crud经历,让我明白自己真的算是菜鸡中的战斗机,也正因为Crud,导致自己技术比较零散,也不够深入不够系统,所以重新进行学习是很有必要的。我差的是系统知识,差的结构框架和思路,所以通过视频来学习,效果更好,也更全面。关于视频学习,个人可以推荐去B站进行学习,B站上有很多学习视频,唯一的缺点就是免费的容易过时。

另外,我自己也珍藏了好几套视频资料躺在网盘里,有需要的我也可以分享给你:

跳槽字节跳动,集群日志收集架构ELK

2、读源码,看实战笔记,学习大神思路

“编程语言是程序员的表达的方式,而架构是程序员对世界的认知”。所以,程序员要想快速认知并学习架构,读源码是必不可少的。阅读源码,是解决问题 + 理解事物,更重要的:看到源码背后的想法;程序员说:读万行源码,行万种实践。

Spring源码深度解析:

跳槽字节跳动,集群日志收集架构ELK

Mybatis 3源码深度解析:

跳槽字节跳动,集群日志收集架构ELK

Redis学习笔记:

跳槽字节跳动,集群日志收集架构ELK

Spring Boot核心技术-笔记:

跳槽字节跳动,集群日志收集架构ELK

3、面试前夕,刷题冲刺

面试的前一周时间内,就可以开始刷题冲刺了。请记住,刷题的时候,技术的优先,算法的看些基本的,比如排序等即可,而智力题,除非是校招,否则一般不怎么会问。

关于面试刷题,我个人也准备了一套系统的面试题,帮助你举一反三:

跳槽字节跳动,集群日志收集架构ELK

只有技术过硬,在哪儿都不愁就业,“万般带不去,唯有业随身”学习本来就不是在课堂那几年说了算,而是在人生的旅途中不间断的事情。

人生短暂,别稀里糊涂的活一辈子,不要将就。

资料领取方式:点击蓝色传送门免费领取上述资料

文章内容中涉及到的Java面试题、源码文档,技术笔记等学习资料,均可以免费分享给大家学习,只需你动动手多多支持即可!

资料领取方式:点击蓝色传送门免费领取上述资料

文章内容中涉及到的Java面试题、源码文档,技术笔记等学习资料,均可以免费分享给大家学习,只需你动动手多多支持即可!

上一篇:Tomcat AJP协议漏洞分析与利用


下一篇:iOS保持页面流畅