ConcurrentHashMap、CopyOnWriteArrayList、LinkedHashMap

  HashMap中未进行同步考虑,而Hashtable在每个方法上加上了synchronized,锁住了整个Hash表,一个时刻只能有一个线程操作,其他的线程则只能等待,在并发的环境下,这样的操作导致Hashtable的效率低下。

  Collections的静态方法synchronizedMap(HashMap hm)返回的是一个SynchronizedMap对象,SynchronizedMap也是对原HashMap中的方法加上synchronized,锁的粒度应该减小。

  ConcurrentHashMap将原来的原来的Hash表分成了16个桶(默认值),桶内的读操作是不加锁的,桶内的写操作是加上了锁的。这样的实现允许更多的线程同时地操作Hash表,在并发的环境下,应该选择的是ConcurrentHashMap。

  ConcurrentHashMap、CopyOnWriteArrayList、LinkedHashMap

  ConcurrentHashMap的get读操作中基本没有用到锁,可以看下面的代码:

 V get(Object key, int hash) {
if (count != 0) { // read-volatile
HashEntry<K,V> e = getFirst(hash);
while (e != null) {
if (e.hash == hash && key.equals(e.key)) {
V v = e.value;
if (v != null)
return v;
return readValueUnderLock(e); // recheck
}
e = e.next;
}
}
return null;
}

  当读到的value是null时,处理是return readValueUnderLock(e);,因为整个的操作未加锁,上面的if (v != null)为false时,可能同时有其他线程修改了value的值,这里有进行一次同步的取值,如下:

V readValueUnderLock(HashEntry<K,V> e) {
lock();
try {
return e.value;
} finally {
unlock();
}
}

  size读操作为了确保读的数据是准确的也进行了部分的加锁操作。

  写后读或者读后写都会造成数据的不一致,即使用线程安全类,应该做好对象的加锁。

  ConcurrentHashMap的写操作锁住了Segment 

public V put(K key, V value) {
if (value == null)
throw new NullPointerException();
int hash = hash(key.hashCode());
return segmentFor(hash).put(key, hash, value, false);
}

  下面是针对Segment的写操作:

V put(K key, int hash, V value, boolean onlyIfAbsent) {
lock();
try {
int c = count;
if (c++ > threshold) // ensure capacity
rehash();
HashEntry<K,V>[] tab = table;
int index = hash & (tab.length - 1);
HashEntry<K,V> first = tab[index];
HashEntry<K,V> e = first;
while (e != null && (e.hash != hash || !key.equals(e.key)))
e = e.next; V oldValue;
if (e != null) {
oldValue = e.value;
if (!onlyIfAbsent)
e.value = value;
}
else {
oldValue = null;
++modCount;
tab[index] = new HashEntry<K,V>(key, hash, first, value);
count = c; // write-volatile
}
return oldValue;
} finally {
unlock();
}
}

  CopyOnWriteArrayList应用于读多写少的场景,对读操作不加锁,对写操作,先复制一份新的集合,在新的集合上面修改,然后将新集合赋值给旧的引用,并通过volatile 保证其可见性,当然写操作的锁是必不可少的了。

  CopyOnWriteArrayList应用于读多写少的场景,在有较多写操作的情况下,CopyOnWriteArrayList性能不佳,而且如果容器容量较大的话容易造成溢出,应该使用Vector。使用ReadWriteLock是另外一种思路。

  下面是的CopyOnWriteArrayList的set操作:

  public E set(int index, E element) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
Object[] elements = getArray();
E oldValue = get(elements, index); if (oldValue != element) {
int len = elements.length;
Object[] newElements = Arrays.copyOf(elements, len);
newElements[index] = element;
setArray(newElements);
} else {
// Not quite a no-op; ensures volatile write semantics
setArray(elements);
}
return oldValue;
} finally {
lock.unlock();
}
}

   Arrays.copyOf创建一个新的数组,在新数组上做了修改后将新数组的引用赋给原对象。

private transient volatile Object[] array;

 final void setArray(Object[] a) {
array = a;
}

  set方法中的

 else {
// Not quite a no-op; ensures volatile write semantics
setArray(elements);
}

  元素都没有发生变化,为什么还要重新做一次赋值操作呢。

  为了保持“volatile”的语义,任何一个读操作都应该是一个写操作的结果,也就是说线程的读操作看到的数据一定是某个线程写操作的结果。这里即使不设置也没有问题,仅仅是为了一个语义上的补充。

  LinkedHashMap实现与HashMap的不同之处在于,后者维护着一个运行于所有条目的双重链接列表。此链接列表定义了迭代顺序,该迭代顺序可以是插入顺序或者是访问顺序。
  
  注意,此实现不是同步的。如果多个线程同时访问链接的哈希映射,而其中至少一个线程从结构上修改了该映射,则它必须保持外部同步。

  LinkedHashMap中的Entry是这样的,维护了before Entry和after Entry。

 static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
上一篇:禁用缓存的过滤器Filter


下一篇:IIS7.0 Windows Server 2008 R2 下配置证书服务器和HTTPS方式访问网站