Given an integer n, generate all structurally unique BST's (binary search trees) that store values 1...n.
For example,
Given n = 3, your program should return all 5 unique BST's shown below.
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
是第96题的延伸,要求出所有可能性。
刚开始写了一个回溯法,但是由于没有办法在TreeNode中重写equals,导致需要重写的东西很多(主要这样做的话,一个一个添加TreeNode。会出现重复的情况),也就导致了时间很长。一百多ms。
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
List list = new ArrayList<TreeNode>();
public List<TreeNode> generateTrees(int n) { if( n == 0)
return list;
int[] pos = new int[n];
for( int i = 0;i<n;i++){
pos[i] = 1;
TreeNode root = new TreeNode(i+1);
getResult(root,pos);
pos[i] = 0;
}
return list;
} public void getResult(TreeNode root,int[] pos){ int flag = 0;
for( int i = 0;i<pos.length;i++){
if( pos[i] == 0){
addNode(root,i);
pos[i] = 1;
getResult(root,pos);
delNote(root,i);
pos[i] = 0;
flag = 1;
}
}
if( flag == 0){
TreeNode ans = getAns(root);
if( !isExist(ans) )
list.add(ans);
} }
public boolean isExist(TreeNode ans){
int size = list.size();
for( int i = 0;i<size;i++){
if( isSame((TreeNode)list.get(i),ans) )
return true;
}
return false; }
public boolean isSame(TreeNode node1,TreeNode node2){
if( node1.val != node2.val)
return false;
if( node1.left != null && node2.left != null){
if( !isSame(node1.left,node2.left) )
return false;
}else if( node1.left == null && node2.left == null)
;
else
return false;
if( node1.right != null && node2.right != null){
if( !isSame(node1.right,node2.right) )
return false;
}else if( node1.right == null && node2.right == null )
;
else
return false;
return true;
} public TreeNode getAns(TreeNode root){ TreeNode ans = new TreeNode(root.val);
if( root.left != null )
ans.left = getAns(root.left);
if( root.right != null)
ans.right = getAns(root.right);
return ans;
} public void addNode(TreeNode root,int i ){
while( true){
if( i+1 > root.val ){
if( root.right == null){
root.right = new TreeNode(i+1);
return ;
}else
root = root.right;
}else{
if( root.left == null){
root.left = new TreeNode(i+1);
return ;
}else
root = root.left;
}
}
}
public void delNote(TreeNode root,int i){
while( true){
if( i+1 > root.val ){
if( i+1 == root.right.val ){
root.right = null;
return ;
}else
root = root.right;
}else{
if( i+1 == root.left.val ){
root.left = null;
return ;
}else
root = root.left;
}
}
} }
然后看了网上的解答,有两个我认为还不错,一个是根据树的结构来回溯,效率很高,不会出现重复,
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public List<TreeNode> generateTrees(int n) { if(n == 0) {
return new ArrayList<TreeNode>();
} return gen(1, n);
} List<TreeNode> gen(int start, int end) {
ArrayList<TreeNode> heads = new ArrayList<TreeNode>();
if(start > end) {
heads.add(null);
return heads;
} for(int i = start; i <= end; i++) { List<TreeNode> lefts = gen(start, i - 1);
List<TreeNode> rights = gen(i + 1, end); for(TreeNode left : lefts) {
for(TreeNode right : rights) {
TreeNode head = new TreeNode(i);
head.left = left;
head.right = right;
heads.add(head);
}
}
} return heads; }
}
还有一种动态规划其实也就是第二种方法的改良。
public static List<TreeNode> generateTrees(int n) {
List<TreeNode>[] result = new List[n + 1];
result[0] = new ArrayList<TreeNode>();
if (n == 0) {
return result[0];
} result[0].add(null);
for (int len = 1; len <= n; len++) {
result[len] = new ArrayList<TreeNode>();
for (int j = 0; j < len; j++) {
for (TreeNode nodeL : result[j]) {
for (TreeNode nodeR : result[len - j - 1]) {
TreeNode node = new TreeNode(j + 1);
node.left = nodeL;
node.right = clone(nodeR, j + 1);
result[len].add(node);
}
}
}
}
return result[n];
} private static TreeNode clone(TreeNode n, int offset) {
if (n == null) {
return null;
}
TreeNode node = new TreeNode(n.val + offset);
node.left = clone(n.left, offset);
node.right = clone(n.right, offset);
return node;
}