从TVM的官方Tutorial里面,介绍了如何新增自定义算子。(这是我翻译的)
之前的文章讲到了onnx 算子转换到Relay IR的过程
下面以Conv2d算子介绍,编译过程中 Relay IR是如何被调用的。
relay 算子调用
上面的get_relay_op
实际上是查找所有 relay ir算子,其代码在python/tvm/relay/frontend/common.py
中的get_relay_op
。继续以conv卷积算子为例介绍。上文所述的转换算子中,有下面的语句
for candidate in (_op, _op.nn, _op.image, _op.vision, _op.contrib):
op = getattr(candidate, op_name, None)
if op is not None:
break
对于conv2d
算子,在_op.nn
中,找到conv2d实现。
def conv2d(
data,
weight,
strides=(1, 1),
padding=(0, 0),
dilation=(1, 1),
groups=1,
channels=None,
kernel_size=None,
data_layout="NCHW",
kernel_layout="OIHW",
out_layout="",
out_dtype="",
):
if isinstance(kernel_size, int):
kernel_size = (kernel_size, kernel_size)
if isinstance(strides, int):
strides = (strides, strides)
if isinstance(dilation, int):
dilation = (dilation, dilation)
padding = get_pad_tuple2d(padding)
return _make.conv2d( data, weight, strides, padding, dilation, groups, channels, kernel_size, data_layout, kernel_layout, out_layout, out_dtype,
)
这里的_make.conv2d
是通过下面的PackFunc注册得到的
tvm._ffi._init_api("relay.op.nn._make", __name__)
在src/relay/op/nn/convolution.cc
找到conv2d的注册函数
TVM_REGISTER_GLOBAL("relay.op.nn._make.conv2d")
.set_body_typed([](Expr data, Expr weight, Array<IndexExpr> strides, Array<IndexExpr> padding,
Array<IndexExpr> dilation, int groups, IndexExpr channels,
Array<IndexExpr> kernel_size, String data_layout, String kernel_layout,
String out_layout, DataType out_dtype) {
return MakeConv<Conv2DAttrs>(data, weight, strides, padding, dilation, groups, channels,
kernel_size, data_layout, kernel_layout, out_layout, out_dtype,
"nn.conv2d");
});
MakeConv 是对所有卷积的模板,根据参数实例化相应的函数
template <typename T>
inline Expr MakeConv(Expr data, Expr weight, Array<IndexExpr> strides, Array<IndexExpr> padding,
Array<IndexExpr> dilation, int groups, IndexExpr channels,
Array<IndexExpr> kernel_size, std::string data_layout,
std::string kernel_layout, std::string out_layout, DataType out_dtype,
std::string op_name) {
auto attrs = make_object<T>();
attrs->strides = std::move(strides);
attrs->padding = std::move(padding);
attrs->dilation = std::move(dilation);
attrs->groups = groups;
attrs->channels = std::move(channels);
attrs->kernel_size = std::move(kernel_size);
attrs->data_layout = std::move(data_layout);
attrs->kernel_layout = std::move(kernel_layout);
attrs->out_layout = std::move(out_layout);
attrs->out_dtype = std::move(out_dtype);
const Op& op = Op::Get(op_name);
return Call(op, {data, weight}, Attrs(attrs), {});
}
这里通过Op::Get(op_name);
获取对应relay算子,在Op::Get
函数中发现是通过查表得到。
// find operator by name
const Op& Op::Get(const String& name) {
const OpRegEntry* reg = OpRegistry::Global()->Get(name);
ICHECK(reg != nullptr) << "AttributeError: Operator " << name << " is not registered";
return reg->op();
}
注册是通过C++的RELAY_REGISTER_OP("nn.conv2d")
宏注册到OpRegistry::Global()
中。宏展开为
static __attribute__((unused))::tvm::OpRegEntry& __make_Op230 =
::tvm::OpRegEntry::RegisterOrGet("nn.conv2d").set_name()
注册过程:
RELAY_REGISTER_OP("nn.conv2d")
.describe(R"code(2D convolution layer (e.g. spatial convolution over images).
This layer creates a convolution kernel that is convolved
with the layer input to produce a tensor of outputs.
- **data**: This depends on the `layout` parameter. Input is 4D array of shape
(batch_size, in_channels, height, width) if `layout` is `NCHW`.
- **weight**: (channels, in_channels, kernel_size[0], kernel_size[1])
- **out**: This depends on the `layout` parameter. Output is 4D array of shape
(batch_size, channels, out_height, out_width) if `layout` is `NCHW`.
)code" TVM_ADD_FILELINE)
.set_attrs_type<Conv2DAttrs>()
.set_num_inputs(2)
.add_argument("data", "Tensor", "The input tensor.")
.add_argument("weight", "Tensor", "The weight tensor.")
.set_support_level(2)
.add_type_rel("Conv2D", Conv2DRel<Conv2DAttrs>)
.set_attr<FInferCorrectLayout>("FInferCorrectLayout", ConvInferCorrectLayout<Conv2DAttrs>);
返回的是OpRegEntry
,后续的set_name
等,则是通过OpRegEntry
的get接口(返回的是OpNode),构造对应的Relay op