无监督学习
和监督学习不同的是,在无监督学习中数据并没有标签(分类)。无监督学习需要通过算法找到这些数据内在的规律,将他们分类。(如下图中的数据,并没有标签,大概可以看出数据集可以分为三类,它就是一个无监督学习过程。)
无监督学习没有训练过程。
聚类算法
该算法将相似的对象轨道同一个簇中,有点像全自动分类。簇内的对象越相似它的分类效果越好。
未接触这个概念可能觉得很高大上,稍微看了一会其实算法的思路和KNN一样很简单。
原始数据集如下(数据有两个特征,分别用横纵坐标表示),原始数据集并没有任何标签和分类信息:
由图中的数据可以大概判断,该数据集可以分为三类数据(定义为0,1,2),那么每个点到底属于哪个分类呢,这里通过K-均值聚类算法得到三个质心点,并根据每个点到三个质心的距离进行分类(到0,1,2三个质心距离最近,则将该数据分为该类),计算出的三个质心点如下图(图中红叉点表示):
K-均值聚类算法
该算法的流程如下:
1. 加载数据集
2. 数据初始化
2.1 创建随机质心点
2.2 穿件保存结果的各个矩阵/数组
3. 多次迭代 (判断所有点的分类是否发生变化)
3.1 计算所有点的分类
3.2 根据3.1分类结果,重新计算质心点(用属于当前类的数据取平均作为新的质心点)
4. 返回数据
该算法缺点:
算法容易收敛到局部最小值,而非全局最小值。(局部最小值指结果还可以,但是并非最好结果,全局最小值时可能的最好结果)
二分K-均值聚类算法
SSE: 度量聚类效果的指标(Sum of Squared Erro,误差平方和)
SSE越小说明所有数据点越接近他们的质心,聚类效果也就越好。
该算法的流程如下:
1. 将所有点看成一个簇
2. 当簇数目小于K时
2.1 对每个簇
2.1.1 计算总误差
2.1.2 在给定簇上面进行K-均值聚类(K=2)
2.1.2 计算在该簇上一分为二之后的总误差
2.2 选择是的误差最小的那个簇进行划分
Python实现
数据加载
def loadDataSet(fileName): #general function to parse tab -delimited floats
dataMat = [] #assume last column is target value
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine) #map all elements to float()
dataMat.append(fltLine)
return dataMat
数据的形式如下,和监督学习数据形式最大的区别是这里的数据是不带有标签的数据。每个数据是一个二维的向量。
3.275154 2.957587
-3.344465 2.603513
0.355083 -3.376585
1.852435 3.547351
-2.078973 2.552013
-0.993756 -0.884433
2.682252 4.007573
-3.087776 2.878713
-1.565978 -1.256985
2.441611 0.444826
-0.659487 3.111284
-0.459601 -2.618005
2.177680 2.387793
-2.920969 2.917485
-0.028814 -4.168078
3.625746 2.119041
-3.912363 1.325108
-0.551694 -2.814223
2.855808 3.483301
..................
向量欧式距离计算函数
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) #la.norm(vecA-vecB)
随机产生n个质心
def randCent(dataSet, k):
n = shape(dataSet)[1]
centroids = mat(zeros((k,n)))#create centroid mat
for j in range(n):#create random cluster centers, within bounds of each dimension
minJ = min(dataSet[:,j])
rangeJ = float(max(dataSet[:,j]) - minJ)
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1))
return centroids
K-均值聚类算法
缺点: 该算法必须要业务提前输入分类的个数K。
该函数返回值为质心坐标centroids,以及每个点最近的质心(即该点的分类结果)和它的距离clusterAssment。
这里需要注意迭代的终止条件: clusterChanged,该标记位用来标记此次迭代是否有数据的分类和上一次得带不同,如果当前这次迭代的对所有数据的分类和上一次分类结果完全相同,则不再继续迭代。
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
#计算数据个数
m = shape(dataSet)[0]
# 存放每个数据到哪个质心距离最近,以及它的距离值
clusterAssment = mat(zeros((m,2)))#create mat to assign data points
#to a centroid, also holds SE of each point
centroids = createCent(dataSet, k)#产生随机的质心点(通过迭代,逐步变得精确)
clusterChanged = True #分类是否改变,迭代结束的条件
while clusterChanged:
clusterChanged = False
for i in range(m):#for each data point assign it to the closest centroid
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:])
if distJI < minDist:
minDist = distJI; minIndex = j
if clusterAssment[i,0] != minIndex: clusterChanged = True
clusterAssment[i,:] = minIndex,minDist**2
print centroids
for cent in range(k):#recalculate centroids
#ptsInClust表示到该质心距离最近的点集合
ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster
#将质心坐标 用最近点坐标的均值代替,所以称为均值聚类算法
centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean
return centroids, clusterAssment
二分K-均值算法
该算法的输入和输出和K-均值算都相同,只是它的内部实现更复杂。
def biKmeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2)))
centroid0 = mean(dataSet, axis=0).tolist()[0]
centList =[centroid0] #create a list with one centroid
for j in range(m):#calc initial Error
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) < k):
lowestSSE = inf
for i in range(len(centList)):
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]#get the data points currently in cluster i
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas)
sseSplit = sum(splitClustAss[:,1])#compare the SSE to the currrent minimum
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE:
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) #change 1 to 3,4, or whatever
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0]#replace a centroid with two best centroids
centList.append(bestNewCents[1,:].tolist()[0])
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss#reassign new clusters, and SSE
return mat(centList), clusterAssment
其它机器学习算法:
监督学习——随机梯度下降算法(sgd)和批梯度下降算法(bgd)
参考:
《机器学习实战》