前言
Java并发编程系列第三篇LockSupport
,上一篇Synchronized
文章中有提过,不推荐读者们使用Object
的wait、notify、notifyAll
等函数做多线程间的通信协同,使用LockSupport
会是更好的选择,本篇就来谈谈LockSupport
,也正好为下篇的A Q S(AbstractQueuedSynchronized)
打基础。
内容大纲
LockSupport基本概念
LockSupport
是线程工具类,主要作用是阻塞和唤醒线程,底层实现依赖Unsafe
,同时它还是锁和其他同步类实现的基础,LockSupport
提供两类静态函数分别是park
和unpark
,即阻塞与唤醒线程,下面是两段代码示例
示例-1
public static void main(String[] agrs) throws InterruptedException {
Thread th = new Thread(() -> {
//阻塞当前线程
LockSupport.park();
System.out.println("子线程执行---------");
});
th.start();
//睡眠2秒
Thread.sleep(2000);
System.out.println("主线程执行---------");
//唤醒线程
LockSupport.unpark(th);
}
}
输出结果:
主线程执行---------
子线程执行---------
上述示例中,子线程th
调用LockSupport.park()
阻塞,主线程睡眠2
秒后,执行LockSupport.unpark(th)
唤醒th
线程,先阻塞后唤醒非常好理解,接下来读者们再看下面的示例
示例-2
public static void main(String[] agrs) throws InterruptedException {
Thread th = new Thread(() -> {
//唤醒当前线程
LockSupport.unpark(Thread.currentThread());
//阻塞当前线程
LockSupport.park();
System.out.println("子线程执行---------");
});
th.start();
//睡眠2秒
Thread.sleep(2000);
System.out.println("主线程执行---------");
}
输出结果:
子线程执行---------
主线程执行---------
嗯?先唤醒th
线程,再阻塞th
线程,最终th
线程没有被阻塞,这是为什么?下面LockSupport
的设计思路会为读者们解开疑惑,并更进一步明确是park
和unpark
的语义(从广义上来说park
和unpark
代表阻塞和唤醒)。
设计思路
LockSupport
的设计思路是通过许可证来实现的,就像汽车上高速公路,入口处要获取通行卡,出口处要交出通行卡,如果没有通行卡你就无法出站,当然你可以选择补一张通行卡。
LockSupport
会为使用它的线程关联一个许可证(permit
)状态,permit
的语义「是否拥有许可」,0
代表否,1
代表是,默认是0
。
LockSupport.unpark
:指定线程关联的permit
直接更新为1
,如果更新前的permit<1
,唤醒指定线程LockSupport.park
:当前线程关联的permit
如果>0
,直接把permit
更新为0
,否则阻塞当前线程
- 线程
A
执行LockSupport.park
,发现permit
为0
,未持有许可证,阻塞线程A
- 线程
B
执行LockSupport.unpark
(入参线程A
),为A
线程设置许可证,permit
更新为1
,唤醒线程A
- 线程
B
流程结束 - 线程
A
被唤醒,发现permit
为1
,消费许可证,permit
更新为0
- 线程
A
执行临界区 - 线程
A
流程结束
经过上面的分析得出结论unpark
的语义明确为「使线程持有许可证」,park
的语义明确为「消费线程持有的许可」,所以unpark
与park
的执行顺序没有强制要求,只要控制好使用的线程即可,unpark=>park
执行流程如下
permit
默认是0
,线程A
执行LockSupport.unpark
,permit
更新为1
,线程A
持有许可证- 线程
A
执行LockSupport.park
,此时permit
是1
,消费许可证,permit
更新为0
- 执行临界区
- 流程结束
最后再补充下park
注意点,因park
阻塞的线程不仅仅会被unpark
唤醒,还可能会被线程中断(Thread.interrupt
)唤醒,而且不会抛出InterruptedException
异常,所以建议在park
后自行判断线程中断状态,来做对应的业务处理。
优点
为什么推荐使用LockSupport
来做线程的阻塞与唤醒(线程间协同工作),因为它具备如下优点
- 以线程为操作对象更符合阻塞线程的直观语义
- 操作更精准,可以准确地唤醒某一个线程(
notify
随机唤醒一个线程,notifyAll
唤醒所有等待的线程) - 无需竞争锁对象(以线程作为操作对象),不会因竞争锁对象产生死锁问题
unpark
与park
没有严格的执行顺序,不会因执行顺序引起死锁问题,比如「Thread.suspend
和Thread.resume
」没按照严格顺序执行,就会产生死锁
另外LockSupport
还提供了park
的重载函数,提升灵活性
void parkNanos(long nanos)
:增加了超时机制void parkUntil(long deadline)
:加入超时机制(指定到某个时间点,1970
年到指定时间点的毫秒数)void park(Object blocker)
:设置blocker
对象,当线程没有许可证被阻塞时,该对象会被记录到该线程的内部,方便后续使用诊断工具进行问题排查void parkNanos(Object blocker, long nanos)
:设置blocker
对象,加入超时机制void parkUntil(Object blocker, long deadline)
:设置blocker
对象,加入超时机制(指定到某个时间点,1970
年到指定时间点的毫秒数)
建议使用时,传入blocker
对象,至于超时根据业务场景选择
实践
使用LockSupport
来完成一道阿里经典的多线程协同工作面试题。
有3
个独立的线程,一个只会输出A
,一个只会输出B
,一个只会输出C
,在三个线程启动的情况下,请用合理的方式让他们按顺序打印ABCABC
。
思路如下
- 准备
3
个线程,分别固定打印A、B、C
- 线程输出完
A、B、C
后需要阻塞等待唤醒 - 额外准备第
4
个线程,作为另外3
个线程的调度器,有序的控制3
个线程执行
是不是很简单,下面通过代码来实践
public static void main(String[] agrs) throws InterruptedException {
LockSupportMain lockSupportMain = new LockSupportMain();
//定义线程t1、t2、t3执行的函数方法
Consumer<String> consumer = str -> {
while (true) {
//线程消费许可证,并传入blocker,方便后续排查问题
LockSupport.park(lockSupportMain);
//防止线程是因中断操作唤醒
if (Thread.currentThread().isInterrupted()){
throw new RuntimeException("线程被中断,异常结束");
}
System.out.println(Thread.currentThread().getName() + ":" + str);
}
};
/**
* 定义分别输出A、B、C的线程
*/
Thread t1 = new Thread(() -> {
consumer.accept("A");
},"T1");
Thread t2 = new Thread(() -> {
consumer.accept("B");
},"T2");
Thread t3 = new Thread(() -> {
consumer.accept("C");
},"T3");
/**
* 定义调度线程
*/
Thread dispatch = new Thread(() -> {
int i=0;
try {
while (true) {
if((i%3)==0) {
//线程t1设置许可证,并唤醒线程t1
LockSupport.unpark(t1);
}else if((i%3)==1) {
//线程t2设置许可证,并唤醒线程t2
LockSupport.unpark(t2);
}else {
//线程t3设置许可证,并唤醒线程t3
LockSupport.unpark(t3);
}
i++;
TimeUnit.MILLISECONDS.sleep(500);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
});
//启动相关线程
t1.start();
t2.start();
t3.start();
dispatch.start();
}
输出内容:
T1:A
T2:B
T3:C
T1:A
T2:B
T3:C
T1:A
T2:B
T3:C
最后再留个题目给读者们思考,使用包含但不限于Synchronized
、ReentrantLock
来完成这个功能
唠叨唠叨
LockSupport
十分简单好用,是作为并发编程的必备基础,阿星觉得是十分有必要掌握的,所以出了这篇文章,后续的计划安排AbstractQueuedSynchronizer、ReentrantLock、ReentrantReadWriteLock
文章,大概两周内出一篇,因为最近公司业务比较忙,所以周更有点困难,但是阿星会尽力做到周更,如果觉得阿星的文章对您有帮助,也请一键三连支持阿星(点赞、再看、转发)
历史好文推荐
- 13张图,深入理解Synchronized
- 由浅入深CAS,小白也能与BAT面试官对线
- 小白也能看懂的Java内存模型
- 保姆级教学,22张图揭开ThreadLocal
- 进程、线程与协程傻傻分不清?一文带你吃透!
- 什么是线程安全?一文带你深入理解
关于我
这里是阿星,一个热爱技术的Java程序猿,公众号 <span style="color: Blue;">「程序猿阿星」</span> 里将会定期分享操作系统、计算机网络、Java、分布式、数据库等精品原创文章,2021,与您在 Be Better 的路上共同成长!。
非常感谢各位小哥哥小姐姐们能看到这里,原创不易,文章有帮助可以关注、点个赞、分享与评论,都是支持(莫要白嫖)!
愿你我都能奔赴在各自想去的路上,我们下篇文章见