前言
之前写过稀疏图的实现方法,这次写用矩阵存储数据的算法实现,只要会矩阵相乘的话,实现这个就很简单了。如果有不懂的可以先看一下下面两篇随笔。
算法实现
我们需要输入两个矩阵A和B,我一开始想的是两个矩阵分别存在两个文件里然后分别读取,但是我发现好像不行,无法区分打上A、B的标签。
所以我一开始就把A、B矩阵合起来存在一个文件里,一次读取。
map.py
#!/usr/bin/env python3
import os
import sys flag = 0 # 0表示处理A矩阵,1表示处理B矩阵
current_row = 1 # 记录现在处理矩阵的第几行 def read_input():
for lines in sys.stdin:
yield lines if __name__ == '__main__':
row_a = int(os.environ.get('row_a'))
col_a = int(os.environ.get('col_a'))
row_b = int(os.environ.get('row_b'))
col_b = int(os.environ.get('col_b'))
for line in read_input():
if line.count('\n') == len(line): # 去空行
pass
data = line.strip().split('\t') if flag == 0:
for i in range(col_b):
for j in range(col_a):
print("%s,%s\tA:%s,%s" % (current_row, i+1, j+1, data[j]))
current_row += 1
if current_row > row_a:
flag = 1
current_row = 1 elif flag == 1:
for i in range(row_a):
for j in range(col_b):
print("%s,%s\tB:%s,%s" % (i+1, j+1, current_row, data[j]))
current_row += 1
reduce.py
#!/usr/bin/env python3
import os
import sys
from itertools import groupby
from operator import itemgetter def read_input(splitstr):
for line in sys.stdin:
line = line.strip()
if len(line) == 0:
continue
yield line.split(splitstr) if __name__ == '__main__':
alpha = float(os.environ.get('alpha'))
row_b = int(os.environ.get('row_b')) data = read_input('\t')
lstg = (groupby(data, itemgetter(0)))
try:
for flag, group in lstg:
matrix_a, matrix_b = {}, {}
total = 0.0
for element, g in group:
matrix = g.split(':')[0]
pos = g.split(':')[1].split(',')[0]
value = g.split(',')[1]
if matrix == 'A':
matrix_a[pos] = value
else:
matrix_b[pos] = value
for key in matrix_a:
total += float(matrix_a[key]) * float(matrix_b[key])
page_rank = alpha * total + (1.0 - alpha) / row_b
print("%s" % page_rank)
except Exception:
pass
算法运行
由于每次迭代会产生新的值,又因为我无法分两个文件读取,所以每次迭代后我要将网络矩阵和新的pageRank值合起来再上传至HDFS。
下面的Python代码的功能就是合并和记录迭代值。
#!/usr/bin/env python3
import sys number = sys.stdin.readline().strip() f_src = open("tmp.txt","r")
f_dst1 = open("result.txt", "a")
f_dst2 = open("B.txt", "a") mat = "{:^30}\t"
f_dst1.write('\n' + number) lines = f_src.readlines()
for line in lines:
if line.count('\n') == len(line):
continue
line = line.strip()
f_dst1.write(mat.format(line))
f_dst2.write(line)
f_dst2.write('\n')
再贴一下运行脚本run.sh
#!/bin/bash pos="/usr/local/hadoop"
max=10 for i in `seq 1 $max`
do $pos/bin/hadoop jar $pos/hadoop-streaming-2.9.2.jar \
-mapper $pos/mapper.py \
-file $pos/mapper.py \
-reducer $pos/reducer.py \
-file $pos/reducer.py \
-input B.txt \
-output out \
-cmdenv "row_a=4" \
-cmdenv "col_a=4" \
-cmdenv "row_b=4" \
-cmdenv "col_b=1" \
-cmdenv "alpha=0.8" \ rm -r ~/Desktop/B.txt
cp ~/Desktop/A.txt ~/Desktop/B.txt
rm -r ~/Desktop/tmp.txt
$pos/bin/hadoop fs -get out/part-00000 ~/Desktop/tmp.txt
echo $i | ~/Desktop/slove.py $pos/bin/hadoop fs -rm B.txt
$pos/bin/hadoop fs -rm -r -f out
$pos/bin/hadoop fs -put ~/Desktop/B.txt B.txt
done
我这里就随便迭代了10次:
我感觉mapreduce用来处理迭代计算实在是太麻烦了,所以才会有twister、haloop、spark这些开源框架的出现吧。