单细胞测序的挑战

 

单细胞测序的挑战

与传统的“bulk” RNA-seq不同,单细胞RNA-seq的主要区别在于一个测序文库代表一个细胞,而不是大量的细胞(Drop-seq例外,其利用细胞UMI和分子UMI将大量细胞建成一个文库)。因此,须加倍关注单细胞测序文库之间的不同。文库间的差异性主要体现在:

扩增效率(Amplification),差异可达100,000倍.

基因“丢失”(dropouts),即一些基因在某些细胞中有表达,但是在另一些细胞中无法检测到.

这两种差异都是由于起始材料太过稀少(RNA分子从一个细胞而来)而产生的。提高转录本捕获效率降低PCR扩增偏好性是亟待解决的问题, 因此这个领域的研究也相当活跃。

 

 

单细胞测序的对照

为了更好估计和消除单细胞测序文库间的技术(系统)误差,现有两种定量标准被广泛采用,即spike-ins和UMIs。使用这两种对照是为了辅助规范(normalization)不同细胞间的基因表达水平。

Spike-ins

Spike-ins是已知浓度的外源RNA分子。在单细胞裂解液中加入Spke-ins后,再进行反转录。最广泛使用的Spike-ins是External RNA Control Consortium (ERCC)提供的合成spikes。其包含96个不同长度和GC含量的mRNA分子 (Jiang et al. 2011)。但是spike-ins的使用浓度通常很高,结果会占据很大比例的测序reads。最新的Drop-seq技术也还没不能加入spike-ins。

UMIs

另一种标准化方法是使用 Unique Molecular Identifiers (UMIs)(Kivioja et al. 2012). UMIs是一种随机条形码(barcode)序列,长度在4-20 bp之间。 在扩增步骤之前(通常在反转录期间),UMIs被添加在每个转录本cDNA的3’或5’端。之后,对转录本末端进行靶向测序。这些barcodes使得在扩增步骤之前,可以对转录本进行定量。虽然UMIs消除扩增偏好性的效果非常好,但是不合适用于研究基因异构体和allel特异表达。

 

 

 

 

REF

https://www.sohu.com/a/122201336_390793

 

上一篇:Android 布局中 ScrollView 内的 TextView 最后一行被遮住的解决办法


下一篇:记一次CSDN的资源加载失败的问题的解决方法