Problem Statement
Given is a prime number \(P\).
How many pairs of integers \((x,y)\)satisfy the following conditions?
- \(0≤x≤P−1\)
- \(0≤y≤P−1\)
- There exists a positive integer \(n\) such that \(x^n≡y(modP)\)
Since the answer may be enormous, print it modulo 998244353.
Constraints
- \(2≤P≤10^12\)
- \(P is a prime number.\)
Input
Input is given from Standard Input in the following format:
P
Output
Print the answer modulo 998244353.
Sample Input 1 Copy
Copy
3
Sample Output 1 Copy
Copy
4
Four pairs \((x,y)=(0,0),(1,1),(2,1),(2,2)\)satisfy the conditions.
Sample Input 2 Copy
Copy
11
Sample Output 2 Copy
Copy
64
Sample Input 3 Copy
Copy
998244353
Sample Output 3 Copy
Copy
329133417
题目翻译
给定质数\(P\),求满足\(0≤x≤P−1\)和\(0≤y≤P−1\),且\(x^n≡y(modP)\)的方案数,答案对998244353取模
题目解析
首先是本题显然可以考虑原根
假设原根为\(G\),那么\(x,y\)可以写成\(G^a,G^b\),原方程变成\(an=b(mod \ P-1)\)
假设枚举\(a\),求\(b\)的方案数。\((a,b)\)有解当\(gcd(P-1,a)|b\)
所以\(b\)的方案数为\(\frac{P-1}{gcd(P-1,a)}\),总方案数为\(\sum_{a=1}^{P-1}\frac{P-1}{gcd(P-1,a)}\)
但是\(O(P)\)的复杂度不能通过\(P<=10^{12}\)
考虑到存在很多的\(a\),\(gcd(P-1,a)\)的值相同。因为\(P-1\)的因数个数为\(O(\sqrt{P-1})\),所以\(gcd(P-1,a)\)的值只有\(O(\sqrt{n})\)个
考虑枚举\(P-1\)的因数,令\(g=gcd(P-1,a)\),答案为\(\sum_{g}\frac{P-1}{g}*φ(\frac{P-1}{g})\)
这里\(φ(x)\)不适用\(O(P)\)的线性筛,可以通过推导式:
\(φ(n)=n(1-\frac{1}{d_1-1})...(1-\frac{1}{d_k-1})\)
预处理\(O(\sqrt{P-1})\)。令\(P-1\)因数数为\(d\),求总方案复杂度为\(O(d^2)\)
P.S:根据官方题解,小于\(10^{12}\)因数最多的数是963761198400,有6720个因数。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include<map>
#include<cmath>
using namespace std;
typedef long long ll;
ll P;
ll fac[2000005],ans;
int cnt,Mod=998244353;
void getFactor(){
for (ll i=1;i<=sqrt(P);i++){
if (P%i==0){
fac[++cnt]=i;
if (P/i!=i)
fac[++cnt]=P/i;
}
}
}
ll getPhi(ll n){
ll phi=n;
for (ll i=2;i<=sqrt(n);i++){
if (n%i==0){
phi=phi/i*(i-1);
while (n%i==0) n/=i;
}
}
if (n>1) phi=phi/n*(n-1);
return phi%Mod;
}
int main(){
cin>>P;
P--;
getFactor();
for (int i=1;i<=cnt;i++){
ans=(ans+(P/fac[i])%Mod*getPhi(P/fac[i])%Mod)%Mod;
}
cout<<ans+1;//考虑x=0,y=0
}