java 四种引用
Java4种引用的级别由高到低依次为:
StrongReference > SoftReference > WeakReference > PhantomReference
1. StrongReference
String tag = new String("T");
此处的 tag 引用就称之为强引用。而强引用有以下特征:
1. 强引用可以直接访问目标对象。
2. 强引用所指向的对象在任何时候都不会被系统回收。
3. 强引用可能导致内存泄漏。
我们要讨论的其它三种Reference较之于强引用而言都属于“弱引用”,也就是他们所引用的对象只要没有强引用,就会根据条件被JVM的垃圾回收器所回收,它们被回收的时机以及用法各不相同。下面分别来进行讨论。
2. SoftReference
软引用有以下特征:
1. 软引用使用 get() 方法取得对象的强引用从而访问目标对象。
2. 软引用所指向的对象按照 JVM 的使用情况(Heap 内存是否临近阈值)来决定是否回收。
3. 软引用可以避免 Heap 内存不足所导致的异常。
当垃圾回收器决定对其回收时,会先清空它的 SoftReference,也就是说 SoftReference 的 get() 方法将会返回 null,然后再调用对象的 finalize() 方法,并在下一轮 GC 中对其真正进行回收。
3. WeakReference
WeakReference 是弱于 SoftReference 的引用类型。弱引用的特性和基本与软引用相似,区别就在于弱引用所指向的对象只要进行系统垃圾回收,不管内存使用情况如何,永远对其进行回收(get() 方法返回 null)。
弱引用有以下特征:
1. 弱引用使用 get() 方法取得对象的强引用从而访问目标对象。
2. 一旦系统内存回收,无论内存是否紧张,弱引用指向的对象都会被回收。
3. 弱引用也可以避免 Heap 内存不足所导致的异常。
4. PhantomReference(虚引用)
PhantomReference 是所有“弱引用”中最弱的引用类型。不同于软引用和弱引用,虚引用无法通过get()方法来取得目标对象的强引用从而使用目标对象,观察源码可以发现 get() 被重写为永远返回 null。
虚引用有以下特征:
虚引用永远无法使用 get() 方法取得对象的强引用从而访问目标对象。
虚引用所指向的对象在被系统内存回收前,虚引用自身会被放入 ReferenceQueue 对象中从而跟踪对象垃圾回收。
虚引用不会根据内存情况自动回收目标对象。
虚引用必须和引用队列(ReferenceQueue)联合使用
Reference与ReferenceQueue 使用demo
定义一个对象Brain
public class Brain {
public int mIndex;
// 占用较多内存,当系统内存不足时,会自动进行回收
private byte []mem;
public Brain(int index) {
mIndex = index;
mem = new byte[1024 * 1024];
}
@Override
protected void finalize() throws Throwable {
super.finalize();
LogUtils.e("Brain", "finalize + index=" + mIndex);
}
}
创建Reference并添加到RefrenceQueue中
// 定义几个成员变量
ReferenceQueue<Brain> mWeakQueue = new ReferenceQueue<>();
ReferenceQueue<Brain> mPhQueue = new ReferenceQueue<>();
List<WeakReference<Brain>> mWeakList = new ArrayList<>();
List<PhantomReference<Brain>> mPhList = new ArrayList<>();
// 开启守护线程用于检测ReferenceQue中是否有对象被添加
private void startDemoThread() {
Thread threadWeak = new Thread(() -> {
try {
int cnt = 0;
WeakReference<Brain> k;
// remove 方法为阻塞式的, 而poll方法不是
while((k = (WeakReference) mWeakQueue.remove()) != null) {
LogUtils.e(TAG, "回收了WeakReference指向对象, : cnt=" + (cnt++) + " wf=" + k);
}
} catch(InterruptedException e) {
//结束循环
}
}, "MainActivityWeak");
threadWeak.setDaemon(true);
threadWeak.start();
Thread threadPh = new Thread(() -> {
try {
int cnt = 0;
PhantomReference<Brain> k;
while((k = (PhantomReference) mPhQueue.remove()) != null) {
LogUtils.e(TAG, "回收了PhantomReference指向对象, cnt=" + (cnt++) + " pr=" + k);
}
} catch(InterruptedException e) {
//结束循环
}
}, "MainActivityPhantom");
threadPh.setDaemon(true);
threadPh.start();
}
// 注意创建的Reference对象需要暂存起来(实测中,如果Reference被回收是不会被添加到ReferenceQueue中的)
private void test() {
for (int i=0; i<1000; i++) {
Brain src1 = new Brain(i);
Brain src2 = new Brain(100000 + i);
// 将Reference注册到RefrenceQueue中
WeakReference<Brain> weakReference = new WeakReference<Brain>(src1, mWeakQueue);
mWeakList.add(weakReference);
//将Reference注册到RefrenceQueue中
PhantomReference<Brain> phantomReference = new PhantomReference<>(src2, mPhQueue);
mPhList.add(phantomReference);
try {
Thread.sleep(10);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
结果打印:
2019-01-29 19:22:27.499 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=0 wf=java.lang.ref.WeakReference@e1f904c
2019-01-29 19:22:27.499 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=1 wf=java.lang.ref.WeakReference@82fc895
2019-01-29 19:22:27.500 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=2 wf=java.lang.ref.WeakReference@3b3fdaa
2019-01-29 19:22:27.500 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=3 wf=java.lang.ref.WeakReference@668fd9b
2019-01-29 19:22:27.501 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=0
2019-01-29 19:22:27.501 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=100000
2019-01-29 19:22:27.502 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=4 wf=java.lang.ref.WeakReference@8db6538
2019-01-29 19:22:27.502 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=5 wf=java.lang.ref.WeakReference@f915911
2019-01-29 19:22:27.503 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=1
2019-01-29 19:22:27.503 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=100001
2019-01-29 19:22:27.504 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=2
2019-01-29 19:22:27.505 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=100002
2019-01-29 19:22:27.507 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=3
2019-01-29 19:22:27.507 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=100003
2019-01-29 19:22:27.507 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=4
2019-01-29 19:22:27.508 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=100004
2019-01-29 19:22:27.508 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=5
2019-01-29 19:22:27.509 9283-9292/com.selftest.test.testapp3 E/IFLY_SDK_Brain: finalize + index=100005
2019-01-29 19:22:27.629 9283-9309/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了PhantomReference: cnt=0 pr=null
2019-01-29 19:22:27.629 9283-9309/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了PhantomReference: cnt=1 pr=null
2019-01-29 19:22:27.629 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=6 wf=java.lang.ref.WeakReference@e2c4a76
2019-01-29 19:22:27.630 9283-9309/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了PhantomReference: cnt=2 pr=null
2019-01-29 19:22:27.630 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=7 wf=java.lang.ref.WeakReference@4cfd877
2019-01-29 19:22:27.630 9283-9309/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了PhantomReference: cnt=3 pr=null
2019-01-29 19:22:27.630 9283-9309/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了PhantomReference: cnt=4 pr=null
2019-01-29 19:22:27.630 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=8 wf=java.lang.ref.WeakReference@37d9ce4
2019-01-29 19:22:27.630 9283-9309/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了PhantomReference: cnt=5 pr=null
2019-01-29 19:22:27.630 9283-9308/com.selftest.test.testapp3 E/IFLY_SDK_MainActivity: 回收了WeakReference: cnt=9 wf=java.lang.ref.WeakReference@ea1754d
结果分析:
- 当对象被回收后,持有他的引用WeakReference/PhantomReference会被放入ReferenceQueue中
- WeakReference在原始对象回收之前被放入ReferenceQueue中,而PhantomReference是在回收之后放入ReferenceQueue中
WeakReference在Leakcanery中的应用
LeakCanery是Android检测内存泄漏的工具,可以检测到Activity/Fragment存在的内存泄漏。
检测原理:
- 在Application中注册监听所有Activity生命周期的listener,registerActivityLifecycleCallbacks。
//ActivityRefWatcher 中的代码
public void watchActivities() {
// Make sure you don't get installed twice.
stopWatchingActivities();
application.registerActivityLifecycleCallbacks(lifecycleCallbacks);
}
public void stopWatchingActivities() {
application.unregisterActivityLifecycleCallbacks(lifecycleCallbacks);
}
- 当Activity的onDestroy被调用时,生成一个uuid,标记这个Activity的WeakReference。
- 创建一个弱引用,并与一个跟踪所有activit回收的ReferenceQueue相关联。(放入一个map中,key : uuid, value:weakReference)
private final Application.ActivityLifecycleCallbacks lifecycleCallbacks =
new ActivityLifecycleCallbacksAdapter() {
@Override public void onActivityDestroyed(Activity activity) {
refWatcher.watch(activity);
}
};
具体的watch执行如下:
public void watch(Object watchedReference, String referenceName) {
if (this == DISABLED) {
return;
}
checkNotNull(watchedReference, "watchedReference");
checkNotNull(referenceName, "referenceName");
final long watchStartNanoTime = System.nanoTime();
String key = UUID.randomUUID().toString();
retainedKeys.add(key);
final KeyedWeakReference reference =
new KeyedWeakReference(watchedReference, key, referenceName, queue);
ensureGoneAsync(watchStartNanoTime, reference);
}
ensureGoneAsync执行如下:
// watchExecutor 在一定时间后检查被注册的WeakReference有没有被添加到ReferenceQueue中
private void ensureGoneAsync(final long watchStartNanoTime, final KeyedWeakReference reference) {
watchExecutor.execute(new Retryable() {
@Override public Retryable.Result run() {
return ensureGone(reference, watchStartNanoTime);
}
});
}
- 在onDestry被调用后若干秒执行如下操作:到ReferenceQueue中去取这个Activity,如果能够取到说明这个Activity被正常回收了。如果无法回收,触发GC,再去RerenceQueue中取如果还是无法取到,说明Activity没有被系统回收,可能存在内存泄漏。
真正核心的代码如下:
long gcStartNanoTime = System.nanoTime();
long watchDurationMs = NANOSECONDS.toMillis(gcStartNanoTime - watchStartNanoTime);
// 如果ReferenceQue中有activity的弱引用,则将retainedKeys中的uuid移除
removeWeaklyReachableReferences();
if (debuggerControl.isDebuggerAttached()) {
// The debugger can create false leaks.
return RETRY;
}
// 如果activity对应的uuid已经被移除,说明activity已经被回收,无内存泄漏
if (gone(reference)) {
return DONE;
}
// 触发gc,进行垃圾回收
gcTrigger.runGc();
removeWeaklyReachableReferences();
// 如果uuid还没有被移除,说明activiy存在内存泄漏,需要dump内存,进行分析
if (!gone(reference)) {
long startDumpHeap = System.nanoTime();
long gcDurationMs = NANOSECONDS.toMillis(startDumpHeap - gcStartNanoTime);
File heapDumpFile = heapDumper.dumpHeap();
if (heapDumpFile == RETRY_LATER) {
// Could not dump the heap.
return RETRY;
}
long heapDumpDurationMs = NANOSECONDS.toMillis(System.nanoTime() - startDumpHeap);
HeapDump heapDump = heapDumpBuilder.heapDumpFile(heapDumpFile).referenceKey(reference.key)
.referenceName(reference.name)
.watchDurationMs(watchDurationMs)
.gcDurationMs(gcDurationMs)
.heapDumpDurationMs(heapDumpDurationMs)
.build();
heapdumpListener.analyze(heapDump);
}
return DONE;
}
HeapDump dump内存和分析的过程这里就不细说。
WeakReference在ThreadLocal中应用
我们知道ThreadLocal是用来存放当前线程值的一个类,也是线程同步的一个工具。
顺便介绍下它的原理,首先我们得知道Thread对象中有一个ThreadLocalMap的成员变量,存放当前线程的所有ThreadLocal值。
该map中存放的数据类型如下:
static class Entry extends WeakReference<ThreadLocal<?>> {
/** The value associated with this ThreadLocal. */
Object value;
Entry(ThreadLocal<?> k, Object v) {
super(k);
value = v;
}
}
当我们调用new ThreadLocal().set(5)时, 首先会获取到当前线程的ThreadLocalMap对象,然后通过自身作为key值到获取value。
如果这里没有使用弱引用,那么ThreadLocal对象很可能无法释放。
WeakReference在Handler中使用防止内存泄漏
熟悉Handler消息机制的都知道,mHandler会作为成员变量保存在发送的消息msg中,即msg持有mHandler的引用,而mHandler是Activity的非静态内部类实例,即mHandler持有Activity的引用,那么我们就可以理解为msg间接持有Activity的引用。msg被发送后先放到消息队列MessageQueue中,然后等待Looper的轮询处理(MessageQueue和Looper都是与线程相关联的,MessageQueue是Looper引用的成员变量,而Looper是保存在ThreadLocal中的)。那么当Activity退出后,msg可能仍然存在于消息对列MessageQueue中未处理或者正在处理,那么这样就会导致Activity无法被回收,以致发生Activity的内存泄露。
下面使用弱应用方式创建handler:
public class MainActivity extends AppCompatActivity {
private Handler mHandler;
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
mHandler = new MyHandler(this);
start();
}
private void start() {
Message msg = Message.obtain();
msg.what = 1;
mHandler.sendMessage(msg);
}
private static class MyHandler extends Handler {
private WeakReference<MainActivity> activityWeakReference;
public MyHandler(MainActivity activity) {
activityWeakReference = new WeakReference<>(activity);
}
@Override
public void handleMessage(Message msg) {
MainActivity activity = activityWeakReference.get();
if (activity != null) {
if (msg.what == 1) {
// 做相应逻辑
}
}
}
}
}