[BZOJ3451]Normal(点分治+FFT)
题面
给你一棵 n个点的树,对这棵树进行随机点分治,每次随机一个点作为分治中心。定义消耗时间为每层分治的子树大小之和,求消耗时间的期望。
分析
根据期望的线性性,答案是$\sum_{i=1}^n(i的期望子树大小)=\sum_{i=1}^n \sum_{j=1}^n [j在i的点分治子树内]$
考虑j在i的点分治子树内的条件,显然i到j的路径上的所有点中,i是第一个被选择为分治中心的。否则如果选的点不是i,那么i和j会被分到两棵子树中。第一个被选择的的概率是$\frac{1}{dist(i,j)+1}$($dist(i,j)\(表示i到j的距离)。那么上式就可以写成\)\sum_{i=1}^n \sum_{j=1}^n \frac{1}{dist(i,j)+1}$
转换一下,设$cnt[d]$表示$dist(i,j)=d$的$(i,j)\(个数,那么答案为\)\sum_{d=0}^ \frac{cnt[d]}{d+1}$。考虑如何求$cnt[k]$
我们在点分治的过程中,dfs出深度为i的节点个数cd[i]。那么求经过根节点的答案的时候就是$cnt[i]=\sum_{j=0}^i cd[j]cd[i-j]$.容易看出这是一个卷积的形式,直接用cd和自身FFT求卷积即可。
注意最后要像一般的点分治一样容斥一下.
时间复杂度满足递推式$T(n)=2T(\frac{2})+\frac{1}{2}n\log n$.根据主定理的第二种情况,答案是$O(n\log^2 n)$
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 200000
using namespace std;
typedef long double db;
typedef long long ll;
const db pi=acos(-1.0);
struct com{//复数类
double real;
double imag;
com(){
}
com(double _real,double _imag){
real=_real;
imag=_imag;
}
com(double x){
real=x;
imag=0;
}
void operator = (const com x){
this->real=x.real;
this->imag=x.imag;
}
void operator = (const double x){
this->real=x;
this->imag=0;
}
friend com operator + (com p,com q){
return com(p.real+q.real,p.imag+q.imag);
}
friend com operator + (com p,double q){
return com(p.real+q,p.imag);
}
void operator += (com q){
*this=*this+q;
}
void operator += (double q){
*this=*this+q;
}
friend com operator - (com p,com q){
return com(p.real-q.real,p.imag-q.imag);
}
friend com operator - (com p,double q){
return com(p.real-q,p.imag);
}
void operator -= (com q){
*this=*this-q;
}
void operator -= (double q){
*this=*this-q;
}
friend com operator * (com p,com q){
return com(p.real*q.real-p.imag*q.imag,p.real*q.imag+p.imag*q.real);
}
friend com operator * (com p,double q){
return com(p.real*q,p.imag*q);
}
void operator *= (com q){
*this=(*this)*q;
}
void operator *= (double q){
*this=(*this)*q;
}
friend com operator / (com p,double q){
return com(p.real/q,p.imag/q);
}
void operator /= (double q){
*this=(*this)/q;
}
void print(){
printf("%lf + %lf i ",real,imag);
}
};
void fft(com *x,int n,int type){
static int rev[maxn+5];
int dn=1,k=0;
while(dn<n){
dn*=2;
k++;
}
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1));
for(int i=0;i<n;i++) if(i<rev[i]) swap(x[i],x[rev[i]]);
for(int len=1;len<n;len*=2){
int sz=len*2;
com wn1=com(cos(2*pi/sz),sin(2*pi/sz)*type);
for(int l=0;l<n;l+=sz){
int r=l+len-1;
com wnk=1;
for(int i=l;i<=r;i++){
com tmp=x[i+len];
x[i+len]=x[i]-wnk*tmp;
x[i]=x[i]+wnk*tmp;
wnk*=wn1;
}
}
}
if(type==-1) for(int i=0;i<n;i++) x[i]/=n;
}
void mul(com *a,com *b,com *ans,int n){//封装多项式乘法
fft(a,n,1);
if(a!=b) fft(b,n,1);
for(int i=0;i<n;i++) ans[i]=a[i]*b[i];
fft(ans,n,-1);
}
struct edge{
int from;
int to;
int next;
}E[maxn*2+5];
int head[maxn+5];
int esz=1;
void add_edge(int u,int v){
esz++;
E[esz].from=u;
E[esz].to=v;
E[esz].next=head[u];
head[u]=esz;
}
bool vis[maxn+5];
int sz[maxn+5],f[maxn+5];
int root;
int tot_sz;
void get_root(int x,int fa){
sz[x]=1;
f[x]=0;
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa&&!vis[y]){
get_root(y,x);
sz[x]+=sz[y];
f[x]=max(f[x],sz[y]);
}
}
f[x]=max(f[x],tot_sz-sz[x]);
if(f[x]<f[root]) root=x;
}
int maxd;
com ff[maxn+5];//当前子树中深度为x的节点个数
com res[maxn+5];
ll cnt[maxn+5];
void get_deep(int x,int fa,int d){
ff[d]+=1;
maxd=max(maxd,d);
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(y!=fa&&!vis[y]){
get_deep(y,x,d+1);
}
}
}
void calc(int x,int d,int type){
maxd=0;
get_deep(x,0,d);
int dn=1,k=0;
while(dn<=maxd*2){
dn*=2;
k++;
}
mul(ff,ff,res,dn);//卷积
for(int i=0;i<=maxd*2;i++) cnt[i]+=(ll)(res[i].real+0.5)*type;//用卷积结果更新cnt
for(int i=0;i<=dn;i++) ff[i]=0;
}
void solve(int x){
vis[x]=1;
calc(x,0,1);
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(!vis[y]){
calc(y,1,-1);//容斥,减去一条边经过两次的答案
root=0;
tot_sz=sz[y];
get_root(y,0);
solve(root);
}
}
}
int n;
int main(){
int u,v;
scanf("%d",&n);
for(int i=1;i<n;i++){
scanf("%d %d",&u,&v);
u++;
v++;
add_edge(u,v);
add_edge(v,u);
}
f[0]=n+1;
root=0;
tot_sz=n;
get_root(1,0);
solve(root);
db ans=0;
for(int i=0;i<=n-1;i++){
ans+=(db)cnt[i]*1/(i+1);
}
printf("%.4Lf\n",ans);
}