1. ops = tf.train.GradientDescentOptimizer(learning_rate) 构建优化器
参数说明:learning_rate 表示输入的学习率
2.ops.compute_gradients(loss, tf.train_variables(), colocate_gradients_with_ops=True)
参数说明:loss表示损失值, tf.train_variables() 表示需要更新的参数, colocate_gradients_with_ops= True表示进行渐变的操作
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt TRAIN_STEP = 20 data = [] num_data = 1000 for i in range(num_data): x_data = np.random.normal(0.0, 0.55) y_data = 0.1 * x_data + 0.3 + np.random.normal(0.0, 0.03) data.append([x_data, y_data]) # 第二步:将数据进行分配,分成特征和标签 X_data = [v[0] for v in data] y_data = [v[1] for v in data] w = tf.Variable(tf.truncated_normal([1], -1, 1), name=‘w‘) b = tf.Variable(tf.zeros([1])) learning_rate_placeholder = 0.5 global_step = tf.Variable(0, trainable=False) learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step, 15, 0.5, staircase=True) # 进行学习率的更替操作 optimizer = tf.train.GradientDescentOptimizer(learning_rate) logits = X_data * w + b loss = tf.reduce_mean(tf.square(y_data - logits)) gradient = optimizer.compute_gradients(loss, tf.trainable_variables(), colocate_gradients_with_ops=True) grad_op = optimizer.apply_gradients(gradient, global_step=global_step) # 进行global_step的更新操作 update_op = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(update_op): train_op = tf.group(grad_op) sess = tf.Session() sess.run(tf.global_variables_initializer()) for i in range(TRAIN_STEP): print(‘epoch:‘, i) # print(‘w:‘, w.numpy()) # print(‘b:‘, b.numpy) sess.run(train_op) print(sess.run(learning_rate)) print(sess.run(global_step)) print(sess.run(w), sess.run(b)) plt.plot(X_data,y_data,"+") plt.plot(X_data,sess.run(w) * X_data + sess.run(b)) plt.show()