首先将椭圆的圆心移动到原点处,同时矩形也进行相应的移动。
在次之后,使用仿射变换,选定任意一个轴变换使其变成圆,那么相应的矩形也同等比例的变换。
变换之后,来一个板子把他们整合起来,结束。
1 int dcmp(double x) { 2 if (fabs(x) < eps)return 0; 3 return x > 0 ? 1 : -1; 4 } 5 struct Point { 6 double x, y; 7 Point(double _x = 0, double _y = 0) { 8 x = _x;y = _y; 9 } 10 }; 11 Point operator + (const Point& a, const Point& b) { 12 return Point(a.x + b.x, a.y + b.y); 13 } 14 Point operator - (const Point& a, const Point& b) { 15 return Point(a.x - b.x, a.y - b.y); 16 } 17 Point operator * (const Point& a, const double& p) { 18 return Point(a.x * p, a.y * p); 19 } 20 Point operator / (const Point& a, const double& p) { 21 return Point(a.x / p, a.y / p); 22 } 23 bool operator < (const Point& a, const Point& b) { 24 return a.x < b.x || (dcmp(a.x - b.x) == 0 && a.y < b.y); 25 } 26 bool operator == (const Point& a, const Point& b) { 27 return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; 28 } 29 double Dot(Point a, Point b) { 30 return a.x * b.x + a.y * b.y; 31 } 32 double Length(Point a) { 33 return sqrt(Dot(a, a)); 34 } 35 double Angle(Point a, Point b) { 36 return acos(Dot(a, b) / Length(a) / Length(b)); 37 } 38 double angle(Point a) { 39 return atan2(a.y, a.x); 40 } 41 double Cross(Point a, Point b) { 42 return a.x * b.y - a.y * b.x; 43 } 44 Point vecunit(Point a) { 45 return a / Length(a); 46 } 47 Point Normal(Point a) { 48 return Point(-a.y, a.x) / Length(a); 49 } 50 Point Rotate(Point a, double rad) { 51 return Point(a.x * cos(rad) - a.y * sin(rad), a.x * sin(rad) + a.y * cos(rad)); 52 } 53 double Area2(Point a, Point b, Point c) { 54 return Length(Cross(b - a, c - a)); 55 } 56 bool OnSegment(Point p, Point a1, Point a2) { 57 return dcmp(Cross(a1 - p, a2 - p)) == 0 && dcmp(Dot(a1 - p, a2 - p)) <= 0; 58 } 59 struct Line { 60 Point p, v; 61 double ang; 62 Line() {}; 63 Line(Point p, Point v) :p(p), v(v) { 64 ang = atan2(v.y, v.x); 65 } 66 bool operator < (const Line& L) const { 67 return ang < L.ang; 68 } 69 Point point(double d) { 70 return p + (v * d); 71 } 72 }; 73 bool OnLeft(const Line& L, const Point& p) { 74 return Cross(L.v, p - L.p) >= 0; 75 } 76 Point GetLineIntersection(Point p, Point v, Point q, Point w) { 77 Point u = p - q; 78 double t = Cross(w, u) / Cross(v, w); 79 return p + v * t; 80 } 81 Point GetLineIntersection(Line a, Line b) { 82 return GetLineIntersection(a.p, a.v, b.p, b.v); 83 } 84 double PolyArea(vector<Point> p) { 85 int n = p.size(); 86 double ans = 0; 87 for (int i = 1;i < n - 1;i++) 88 ans += Cross(p[i] - p[0], p[i + 1] - p[0]); 89 return fabs(ans) / 2; 90 } 91 struct Circle 92 { 93 Point c; 94 double r; 95 Circle() {} 96 Circle(Point c, double r) :c(c), r(r) {} 97 Point point(double a) //根据圆心角求点坐标 98 { 99 return Point(c.x + cos(a) * r, c.y + sin(a) * r); 100 } 101 }; 102 103 bool InCircle(Point x, Circle c) { 104 return dcmp(c.r - Length(c.c - x)) >= 0; 105 } 106 bool OnCircle(Point x, Circle c) { 107 return dcmp(c.r - Length(c.c - x)) == 0; 108 } 109 int getSegCircleIntersection(Line L, Circle C, Point* sol) { 110 Point nor = Normal(L.v); 111 Line p1 = Line(C.c, nor); 112 Point ip = GetLineIntersection(p1, L); 113 double dis = Length(ip - C.c); 114 if (dcmp(dis - C.r) > 0)return 0; 115 Point dxy = vecunit(L.v) * sqrt(C.r * C.r - dis * dis); 116 int ret = 0; 117 sol[ret] = ip + dxy; 118 if (OnSegment(sol[ret], L.p, L.point(1)))ret++; 119 sol[ret] = ip - dxy; 120 if (OnSegment(sol[ret], L.p, L.point(1)))ret++; 121 return ret; 122 } 123 double SegCircleArea(Circle C, Point a, Point b) { 124 double a1 = angle(a - C.c); 125 double a2 = angle(b - C.c); 126 double da = fabs(a1 - a2); 127 if (da > pi)da = pi * 2 - da; 128 return dcmp(Cross(b - C.c, a - C.c)) * da * C.r * C.r / 2.0; 129 } 130 double PolyCircleArea(Circle C, Point* p, int n) { 131 double ret = 0; 132 Point sol[2]; 133 p[n] = p[0]; 134 for (int i = 0;i < n;i++) { 135 double t1, t2; 136 int cnt = getSegCircleIntersection(Line(p[i], p[i + 1] - p[i]), C, sol); //判断线段与圆有几个交点, 137 // cout<<"cnt="<<cnt<<" "<<p[i].x<<" "<<p[i].y<<" "<<p[i+1].x<<" "<<p[i+1].y<<endl; 138 // cout<<"C: "<<C.c.x<<" "<<C.c.y<<" "<<C.r<<endl; 139 // cout<<"sol ";for(int j=0;j<cnt;j++)cout<<sol[j].x<<" "<<sol[j].y<<" ";cout<<endl; 140 //cout << cnt << endl; 141 if (cnt == 0) { //0个交点,判断线段在多边形内部还是外部。 142 if (!InCircle(p[i], C) || !InCircle(p[i + 1], C))ret += SegCircleArea(C, p[i], p[i + 1]); //外部直接计算圆弧面积 143 else ret += Cross(p[i + 1] - C.c, p[i] - C.c) / 2; //内部计算三角形面积。 144 } 145 if (cnt == 1) { 146 if (InCircle(p[i], C) && (!InCircle(p[i + 1], C) || OnCircle(p[i + 1], C)))ret += Cross(sol[0] - C.c, p[i] - C.c) / 2, ret += SegCircleArea(C, sol[0], p[i + 1]);//,cout<<"jj-1"<<endl; 147 else ret += SegCircleArea(C, p[i], sol[0]), ret += Cross(p[i + 1] - C.c, sol[0] - C.c) / 2;//,cout<<"jj-2"<<endl; 148 } 149 if (cnt == 2) { //两个交点 150 if ((p[i] < p[i + 1]) ^ (sol[0] < sol[1]))swap(sol[0], sol[1]); 151 ret += SegCircleArea(C, p[i], sol[0]); 152 ret += Cross(sol[1] - C.c, sol[0] - C.c) / 2; 153 ret += SegCircleArea(C, sol[1], p[i + 1]); 154 } 155 // cout<<ret<<endl; 156 } 157 return fabs(ret); 158 }