链接:
题目大意:
给定一个字符串 \(s\),找到最小的 \(t\) 使得 \(t\) 匹配的位置能覆盖 \(s\)。
思路:
\(t\) 一定是 \(s\) 的一个前后缀(\(s\) 也算),考虑 DP。设 \(f_i\) 表示前缀 \(i\) 的答案,那么 \(f_i\) 要么是 \(i\),要么是 \(f_{\mathrm{border}(i)}\)。那么如果是 \(f_{\mathrm{border}(i)}\),那么某个 \(f_j=f_{\mathrm{border}(i)}\) 一定在 \([i-\mathrm{border}(i),i]\) 内。
代码:
const int N = 5e5 + 10;
inline ll Read() {
ll x = 0, f = 1;
char c = getchar();
while (c != '-' && (c < '0' || c > '9')) c = getchar();
if (c == '-') f = -f, c = getchar();
while (c >= '0' && c <= '9') x = (x << 3) + (x << 1) + c - '0', c = getchar();
return x * f;
}
char s[N];
int nxt[N], f[N], g[N];;
int main() {
// freopen(".in", "r", stdin);
// freopen(".out", "w", stdout);
scanf ("%s", s + 1);
int n = strlen (s + 1);
for (int i = 2, j = 0; i <= n; i++) {
while (j && s[i] != s[j + 1]) j = nxt[j];
if (s[i] == s[j + 1]) j++;
nxt[i] = j;
}
for (int i = 1; i <= n; i++) {
f[i] = i;
if (g[f[nxt[i]]] >= i - nxt[i]) f[i] = f[nxt[i]];
g[f[i]] = i;
}
printf ("%d\n", f[n]);
return 0;
}