Of course, complex models also have their disadvantages. The first is computational cost, as larger models require both more memory and more computation to fit and serve. The second is the requirement for more data: in general, more training data is needed to take advantage of deeper models. With more parameters, deep models might overfit or even simply memorize the training examples instead of learning a function that can generalize. Finally, training deeper models may be harder, and more care needs to be taken in choosing settings like regularization and learning rate. Finding a good architecture for a real-world recommender system is a complex art, requiring good intuition and careful hyperparameter tuning. For example, factors such as the depth and width of the model, activation function, learning rate, and optimizer can radically change the performance of the model. Modelling choices are further complicated by the fact that good offline evaluation metrics may not correspond to good online performance, and that the choice of what to optimize for is often more critical than the choice of model itself. Nevertheless, effort put into building and fine-tuning larger models often pays off. In this tutorial, we will illustrate how to build deep retrieval models using TensorFlow Recommenders. We‘ll do this by building progressively more complex models to see how this affects model performance.
import os
import tempfile
?
%matplotlib inline
import matplotlib.pyplot as plt
?
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
?
import tensorflow_recommenders as tfrs
?
plt.style.use(‘seaborn-whitegrid‘)
In this tutorial we will use the models from the featurization tutorial to generate embeddings. Hence we will only be using the user id, timestamp, and movie title features.
ratings = tfds.load("movielens/100k-ratings", split="train")
movies = tfds.load("movielens/100k-movies", split="train")
?
ratings = ratings.map(lambda x: {
"movie_title": x["movie_title"],
"user_id": x["user_id"],
"timestamp": x["timestamp"],
})
movies = movies.map(lambda x: x["movie_title"])
We also do some housekeeping to prepare feature vocabularies.
timestamps = np.concatenate(list(ratings.map(lambda x: x["timestamp"]).batch(100)))
?
max_timestamp = timestamps.max()
min_timestamp = timestamps.min()
?
timestamp_buckets = np.linspace(
min_timestamp, max_timestamp, num=1000,
)
?
unique_movie_titles = np.unique(np.concatenate(list(movies.batch(1000))))
unique_user_ids = np.unique(np.concatenate(list(ratings.batch(1_000).map(
lambda x: x["user_id"]))))
Model definition
Query model
We start with the user model defined in the featurization tutorial as the first layer of our model, tasked with converting raw input examples into feature embeddings.
class UserModel(tf.keras.Model):
?
def __init__(self):
super().__init__()
?
self.user_embedding = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.StringLookup(
vocabulary=unique_user_ids, mask_token=None),
tf.keras.layers.Embedding(len(unique_user_ids) + 1, 32),
])
self.timestamp_embedding = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.Discretization(timestamp_buckets.tolist()),
tf.keras.layers.Embedding(len(timestamp_buckets) + 1, 32),
])
self.normalized_timestamp = tf.keras.layers.experimental.preprocessing.Normalization()
?
self.normalized_timestamp.adapt(timestamps)
?
def call(self, inputs):
# Take the input dictionary, pass it through each input layer,
# and concatenate the result.
return tf.concat([
self.user_embedding(inputs["user_id"]),
self.timestamp_embedding(inputs["timestamp"]),
self.normalized_timestamp(inputs["timestamp"]),
], axis=1)
Defining deeper models will require us to stack mode layers on top of this first input. A progressively narrower stack of layers, separated by an activation function, is a common pattern:
+----------------------+
| 128 x 64 |
+----------------------+
| relu
+--------------------------+
| 256 x 128 |
+--------------------------+
| relu
+------------------------------+
| ... x 256 |
+------------------------------+
Since the expressive power of deep linear models is no greater than that of shallow linear models, we use ReLU activations for all but the last hidden layer. The final hidden layer does not use any activation function: using an activation function would limit the output space of the final embeddings and might negatively impact the performance of the model. For instance, if ReLUs are used in the projection layer, all components in the output embedding would be non-negative.
We‘re going to try something similar here. To make experimentation with different depths easy, let‘s define a model whose depth (and width) is defined by a set of constructor parameters.
class QueryModel(tf.keras.Model):
"""Model for encoding user queries."""
?
def __init__(self, layer_sizes):
"""Model for encoding user queries.
?
Args:
layer_sizes:
A list of integers where the i-th entry represents the number of units
the i-th layer contains.
"""
super().__init__()
?
# We first use the user model for generating embeddings.
self.embedding_model = UserModel()
?
# Then construct the layers.
self.dense_layers = tf.keras.Sequential()
?
# Use the ReLU activation for all but the last layer.
for layer_size in layer_sizes[:-1]:
self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))
?
# No activation for the last layer.
for layer_size in layer_sizes[-1:]:
self.dense_layers.add(tf.keras.layers.Dense(layer_size))
?
def call(self, inputs):
feature_embedding = self.embedding_model(inputs)
return self.dense_layers(feature_embedding)
The layer_sizes parameter gives us the depth and width of the model. We can vary it to experiment with shallower or deeper models.
Candidate model
We can adopt the same approach for the movie model. Again, we start with the MovieModel from the featurization tutorial:
class MovieModel(tf.keras.Model):
?
def __init__(self):
super().__init__()
?
max_tokens = 10_000
?
self.title_embedding = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.StringLookup(
vocabulary=unique_movie_titles,mask_token=None),
tf.keras.layers.Embedding(len(unique_movie_titles) + 1, 32)
])
?
self.title_vectorizer = tf.keras.layers.experimental.preprocessing.TextVectorization(
max_tokens=max_tokens)
?
self.title_text_embedding = tf.keras.Sequential([
self.title_vectorizer,
tf.keras.layers.Embedding(max_tokens, 32, mask_zero=True),
tf.keras.layers.GlobalAveragePooling1D(),
])
?
self.title_vectorizer.adapt(movies)
?
def call(self, titles):
return tf.concat([
self.title_embedding(titles),
self.title_text_embedding(titles),
], axis=1)
And expand it with hidden layers:
class CandidateModel(tf.keras.Model):
"""Model for encoding movies."""
?
def __init__(self, layer_sizes):
"""Model for encoding movies.
?
Args:
layer_sizes:
A list of integers where the i-th entry represents the number of units
the i-th layer contains.
"""
super().__init__()
?
self.embedding_model = MovieModel()
?
# Then construct the layers.
self.dense_layers = tf.keras.Sequential()
?
# Use the ReLU activation for all but the last layer.
for layer_size in layer_sizes[:-1]:
self.dense_layers.add(tf.keras.layers.Dense(layer_size, activation="relu"))
?
# No activation for the last layer.
for layer_size in layer_sizes[-1:]:
self.dense_layers.add(tf.keras.layers.Dense(layer_size))
?
def call(self, inputs):
feature_embedding = self.embedding_model(inputs)
return self.dense_layers(feature_embedding)
Combined model
With both QueryModel and CandidateModel defined, we can put together a combined model and implement our loss and metrics logic. To make things simple, we‘ll enforce that the model structure is the same across the query and candidate models.
class MovielensModel(tfrs.models.Model):
?
def __init__(self, layer_sizes):
super().__init__()
self.query_model = QueryModel(layer_sizes)
self.candidate_model = CandidateModel(layer_sizes)
self.task = tfrs.tasks.Retrieval(
metrics=tfrs.metrics.FactorizedTopK(
candidates=movies.batch(128).map(self.candidate_model),
),
)
?
def compute_loss(self, features, training=False):
# We only pass the user id and timestamp features into the query model. This
# is to ensure that the training inputs would have the same keys as the
# query inputs. Otherwise the discrepancy in input structure would cause an
# error when loading the query model after saving it.
query_embeddings = self.query_model({
"user_id": features["user_id"],
"timestamp": features["timestamp"],
})
movie_embeddings = self.candidate_model(features["movie_title"])
?
return self.task(
query_embeddings, movie_embeddings, compute_metrics=not training)
Training the model
Prepare the data
We first split the data into a training set and a testing set.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
?
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
?
cached_train = train.shuffle(100_000).batch(2048)
cached_test = test.batch(4096).cache()
Shallow model
We‘re ready to try out our first, shallow, model!
num_epochs = 300
?
model = MovielensModel([32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
?
one_layer_history = model.fit(
cached_train,
validation_data=cached_test,
validation_freq=5,
epochs=num_epochs,
verbose=0)
?
accuracy = one_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")
Deeper model
What about a deeper model with two layers?
model = MovielensModel([64, 32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
?
two_layer_history = model.fit(
cached_train,
validation_data=cached_test,
validation_freq=5,
epochs=num_epochs,
verbose=0)
?
accuracy = two_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")
The accuracy here is 0.29, quite a bit better than the shallow model.
We can plot the validation accuracy curves to illustrate this:
Even early on in the training, the larger model has a clear and stable lead over the shallow model, suggesting that adding depth helps the model capture more nuanced relationships in the data. However, even deeper models are not necessarily better. The following model extends the depth to three layers:
model = MovielensModel([128, 64, 32])
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.1))
?
three_layer_history = model.fit(
cached_train,
validation_data=cached_test,
validation_freq=5,
epochs=num_epochs,
verbose=0)
?
accuracy = three_layer_history.history["val_factorized_top_k/top_100_categorical_accuracy"][-1]
print(f"Top-100 accuracy: {accuracy:.2f}.")
代码链接: