时间改变的原本就是不坚定的东西!
What time changes is not firm!
目录
后记:●由于作者水平有限,文章难免存在谬误之处,敬请读者斧正,俚语成篇,恳望指教! ——By 作者:新晓·故知
☛ 结构体
♦结构体类型的声明
♦结构的自引用
♦结构体变量的定义和初始化
♦结构体内存对齐
♦结构体传参
♦结构体实现位段(位段的填充&可移植性)
☛枚举
♦枚举类型的定义
♦枚举的优点
♦枚举的使用
☛联合
♦联合类型的定义
♦联合的特点
♦联合大小的计算
结构体
1 结构体的声明
1.1 结构的基础知识
结构是一些值的集合,这些值称为成员变量。结构的每个成员可以是不同类型的变量。
1.2 结构的声明
struct tag
{
member - list;
}variable - list;
例如描述一个学生:
struct Stu
{
char name[20];//名字
int age;//年龄
char sex[5];//性别
char id[20];//学号
}; //分号不能丢
1.3 特殊的声明
在声明结构的时候,可以不完全的声明。
比如:
//匿名结构体类型
struct
{
int a;
char b;
float c;
}x;
struct
{
int a;
char b;
float c;
}a[20], * p;
上面的两个结构在声明的时候省略掉了结构体标签(tag)。
那么问题来了?
//在上面代码的基础上,下面的代码合法吗?
p = &x;
警告: 编译器会把上面的两个声明当成完全不同的两个类型。 所以是非法的。
1.4 结构的自引用
在结构中包含一个类型为该结构本身的成员是否可以呢?
//代码1
struct Node
{
int data;
struct Node next;
};
//可行否?
如果可以,那sizeof(struct Node)是多少?
正确的自引用方式:
//代码2
struct Node
{
int data;
struct Node* next;
};
注意:
//代码3
typedef struct
{
int data;
Node* next;
}Node;
//这样写代码,可行否?
//解决方案:
typedef struct Node
{
int data;
struct Node* next;
}Node;
1.5 结构体变量的定义和初始化
有了结构体类型,那如何定义变量,其实很简单。
struct Point
{
int x;
int y;
}p1; //声明类型的同时定义变量p1
struct Point p2; //定义结构体变量p2
//初始化:定义变量的同时赋初值。
struct Point p3 = {x, y};
struct Stu //类型声明
{
char name[15];//名字
int age; //年龄
};
struct Stu s = {"zhangsan", 20};//初始化
struct Node
{
int data;
struct Point p;
struct Node* next;
}n1 = {10, {4,5}, NULL}; //结构体嵌套初始化
struct Node n2 = {20, {5, 6}, NULL};//结构体嵌套初始化
1.6 结构体内存对齐
我们已经掌握了结构体的基本使用了。 现在我们深入讨论一个问题:计算结构体的大小。 这也是一个特别热门的考点: 结构体内存对齐
//练习1
struct S1 {
char c1;
int i;
char c2;
};
printf("%d\n", sizeof(struct S1));
//练习2
struct S2
{
char c1;
char c2;
int i;
};
printf("%d\n", sizeof(struct S2));
//练习3
struct S3
{
double d;
char c;
int i;
};
printf("%d\n", sizeof(struct S3));
//练习4-结构体嵌套问题
struct S4
{
char c1;
struct S3 s3;
double d;
};
printf("%d\n", sizeof(struct S4))
考点
如何计算?
首先得掌握结构体的对齐规则:
1. 第一个成员在与结构体变量偏移量为0的地址处。
2. 其他成员变量要对齐到某个数字(对齐数)的整数倍的地址处。 对齐数 = 编译器默认的一个对齐数 与 该成员大小的较小值。 VS中默认的值为8
3. 结构体总大小为最大对齐数(每个成员变量都有一个对齐数)的整数倍。
4. 如果嵌套了结构体的情况,嵌套的结构体对齐到自己的最大对齐数的整数倍处,结构体的整 体大小就是所有最大对齐数(含嵌套结构体的对齐数)的整数倍。
为什么存在内存对齐?
大部分的参考资料都是如是说的:
1. 平台原因(移植原因): 不是所有的硬件平台都能访问任意地址上的任意数据的;某些硬件平台只能在某些地址处取某些特 定类型的数据,否则抛出硬件异常。
2. 性能原因: 数据结构(尤其是栈)应该尽可能地在自然边界上对齐。 原因在于,为了访问未对齐的内存,处理器需要作两次内存访问;而对齐的内存访问仅需要一次访 问。
总体来说: 结构体的内存对齐是拿空间来换取时间的做法。
那在设计结构体的时候,我们既要满足对齐,又要节省空间,如何做到: 让占用空间小的成员尽量集中在一起。
//例如:
struct S1
{
char c1;
int i;
char c2;
};
struct S2
{
char c1;
char c2;
int i;
};
S1和S2类型的成员一模一样,但是S1和S2所占空间的大小有了一些区别。
1.7 修改默认对齐数
之前我们见过了 #pragma 这个预处理指令,这里我们再次使用,可以改变我们的默认对齐数。
#include <stdio.h>
#pragma pack(8)//设置默认对齐数为8
struct S1
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
#pragma pack(1)//设置默认对齐数为1
struct S2
{
char c1;
int i;
char c2;
};
#pragma pack()//取消设置的默认对齐数,还原为默认
int main()
{
//输出的结果是什么?
printf("%d\n", sizeof(struct S1));
printf("%d\n", sizeof(struct S2));
return 0;
}
结论: 结构在对齐方式不合适的时候,我么可以自己更改默认对齐数。 百度笔试题: 写一个宏,计算结构体中某变量相对于首地址的偏移,并给出说明 考察: offsetof 宏的实现
1.8 结构体传参
分析一下代码:
struct S
{
int data[1000];
int num;
};
struct S s = { {1,2,3,4}, 1000 };
//结构体传参
void print1(struct S s)
{
printf("%d\n", s.num);
}
//结构体地址传参
void print2(struct S* ps)
{
printf("%d\n", ps->num);
}
int main()
{
print1(s); //传结构体
print2(&s); //传地址
return 0;
}
上面的 print1 和 print2 函数哪个好些?
答案是:首选print2函数。
原因:
函数传参的时候,参数是需要压栈,会有时间和空间上的系统开销。 如果传递一个结构体对象的时候,结构体过大,参数压栈的的系统开销比较大,所以会导致性能的 下降。
结论: 结构体传参的时候,要传结构体的地址。