AVL树的Java实现

AVL树:平衡的二叉搜索树,其子树也是AVL树。

以下是我实现AVL树的源码(使用了泛型):

import java.util.Comparator;

public class AVLTree<T extends Comparable<T>> {
/*
AVL树:
左右子树高度绝对值最多差1的二叉搜索树
子树也是AVL树
*/
private Node<T> root;
class Node<T extends Comparable<T>>{
T key;
int height;
Node<T> left;
Node<T> right; public Node(T key, int height, Node<T> left, Node<T> right) {
this.key = key;
this.height = height;
this.left = left;
this.right = right;
}
public Node(T key){
this.key = key;
this.height = 0;
}
}
public int getHeight(Node<T> node){
return node == null ? 0 : node.height;
}
public Node<T> LL(Node<T> node){
//左子树插入节点在左导致不平衡,需要旋转,以下不再赘述
Node<T> leftNode = node.left;
node.left = leftNode.right;
leftNode.right = node;
node.height = Math.max(node.left.height,node.right.height) + 1;
leftNode.height = Math.max(leftNode.left.height, leftNode.right.height) + 1;
return leftNode;
}
public Node<T> RR(Node<T> node) {
Node<T> rightNode;
rightNode = node.right;
node.right = rightNode.left;
rightNode.left = node; node.height = Math.max( node.left.height, node.right.height) + 1;
rightNode.height = Math.max( rightNode.left.height, rightNode.right.height) + 1;
return rightNode;
}
public Node<T> LR(Node<T> node){
//LR先对左子树RR再对本树LL
node.left = RR(node.left);
return LL(node);
}
public Node<T> RL(Node<T> node){
node.right = LL(node.right);
return RR(node);
}
public Node<T> insert(Node<T> root,T key){
/*
插入:先判断插入点,再判断是否需要翻转
*/
if(root == null){
return new Node<T>(key);
}
else{
if(key.compareTo(root.key)<0)
//T是实现了comparable接口的,所以这里可以比较,但不能用大小于号
{
root.left = insert(root.left,key);
if(root.left.height - root.right.height == 2){
if (key.compareTo(root.left.key) < 0)
root = LL(root);
else
root = LR(root);
}
}else if(key.compareTo(root.key)>0){
root.right = insert(root.right,key);
if(root.left.height - root.right.height == -2){
if (key.compareTo(root.right.key) < 0)
root = RL(root);
else
root = RR(root);
}
}else{
return root;//相同的节点不添加
}
}
return root;
}
public Node<T> delete(Node<T> root,T key){
/*
删除:找到删除点,判断是否需要翻转
*/
if(root == null || key == null){
return root;
}
else{
if(key.compareTo(root.key)<0)
//T是实现了comparable接口的,所以这里可以比较,但不能用大小于号
{
root.left = delete(root.left,key);
if(root.left.height - root.right.height == -2){
Node<T> rightNode = root.right;
if (rightNode.right.height>root.left.height)
root = RL(root);
else
root = RR(root);
}
}else if(key.compareTo(root.key)>0){
root.right = delete(root.right,key);
if(root.left.height - root.right.height == 2){
Node<T> leftNode = root.left;
if (leftNode.left.height>leftNode.right.height)
root = LL(root);
else
root = LR(root);
}
}else {
//找到了要删除的节点
if (root.left == null) root = root.right;
else if (root.right == null) root = root.left;
else {
if (root.left.height < root.right.height) {
Node<T> tempNode = root.right;
while (tempNode.left != null) {
tempNode = tempNode.left;
}//为保证二叉树的平衡性、搜索性
//这里选择了高度较高的子树,选取中序遍历与root相邻的节点作为root,这样不会破坏搜索性
root.key = tempNode.key;
delete(tempNode, key);
} else {
Node<T> tempNode = root.left;
while (tempNode.right != null) {
tempNode = tempNode.right;
}//为保证二叉树的平衡性、搜索性
//这里选择了高度较高的子树,选取中序遍历与root相邻的节点作为root
root.key = tempNode.key;
delete(tempNode, key);
}
}
}
}
return root;
}
}
上一篇:Python学习之路——Day02


下一篇:python学习笔记(四)---python不能输出中文问题