高通驱动树中的GPIO详解
Drive Strength && tri-state相关概念
Drive Strength(也被称为:driving strength):表示“驱动强度”。这个参数用来控制信号强度,数值越大代表信号强度越高。
tri-state:三态,高电平、低电平、高阻。
实质
电路分析时高阻态可做开路理解。你可以把它看作输出(输入)电阻非常大。它的极限状态可以认为悬空(开路)。也就是说理论上高阻态不是悬空,它是对地或对电源电阻极大的状态。而实际应用上与引脚的悬空几乎是一样的。
意义
当门电路的输出上拉管导通而下拉管截止时,输出为高电平;反之就是低电平;如上拉管和下拉管都截止时,输出端就相当于浮空(没有电流流动),其电平随外部电平高低而定,即该门电路放弃对输出端电路的控制 。
表示方法
高阻态常用字母 Z 表示。
原有GPIO配置框架
之前所有的gpio操作都是通过gpiolib来实现,常用的api包括:
static inline int gpio_request(unsigned gpio, const char *label);
static inline int gpio_direction_input(unsigned gpio);
static inline int gpio_direction_output(unsigned gpio, int value);
static inline void gpio_set_value(unsigned gpio, int value);
static inline void gpio_free(unsigned gpio);
在硬件设计确定了某个设备需要使用哪些gpio之后,软件需要做的是:
以msm8916平台tp的中断为例
1)在msm8916-cdp.dsi中定义使用哪个gpio
i2c@f9924000{
goodix@5d{
compatible= "goodix,gt9xx";
reg= <0x5d>;
interrupt-parent= <&msmgpio>;
interrupts= <13 0x2>;
▲interrupt-gpios= <&msm_gpio 13 0x00>;
};
}
2)在board-8916-gpiomux.c中定义gpio的suspend和active状态
static struct gpiomux_setting ▲atmel_int_act_cfg = {
.func =GPIOMUX_FUNC_GPIO,
.drv = GPIOMUX_DRV_2MA,
.pull = GPIOMUX_PULL_UP,
};
static struct gpiomux_setting ▲atmel_int_sus_cfg = {
.func =GPIOMUX_FUNC_GPIO,
.drv = GPIOMUX_DRV_2MA,
.pull =GPIOMUX_PULL_NONE,
};
static struct msm_gpiomux_config ▲msm_touch_configs[] __initdata = {
▲ .gpio = 13,
.settings = {
[GPIOMUX_ACTIVE] = ▲ &atmel_int_act_cfg,
[GPIOMUX_SUSPENDED]= ▲ &atmel_int_sus_cfg,
},
},
PinControl 框架
Gpiolib方式的缺点在于:当同一套代码对应多个board设计时,需要在board--gpiomux.c
文件中加宏进行区分。如在同一个分支上支持3个项目,在board-msm8974-gpiomux.c
文件中添加了很多宏控。
pinctrl方式可以避免代码中的这种冗余代码:它将board--gpiomux.c
文件中的配置信息移到xx-pinctrl.dtsi
;这样,针对不同project的board设计,分别在各自project的xx-pinctrl.dtsi
中定义各自的gpio配置信息。
Pinctrlsubsystem 分为3部分:Pinctrl core、Pinmux和Pinconf。
- pinctrlcore是pincontrol子系统的核心,提供了和devicedriver交互的API;
- pinmux用于实现pin的复用;
- pinconf用于实现pin的配置,如输入/输出、pulldown/pull up、driverstrength等;另外还提供了用于debug的接口。
与gpio子系统的交互
虽然pinctrl提供了pinctrl_request_gpio()
这样的API,但在代码中不可以直接调用pinctrl_request_gpio()
,在该函数的定义处也有说明,如下:
/* This function should *ONLY* be used from gpiolib-based GPIO drivers,
* as part of their gpio_request() semantics, platforms and individualdrivers
* shall *NOT* request GPIO pins to be muxed in.”
*/
当设备驱动申请一个gpio时,仍然需要调用gpio_request()
,这里会调用pinctrl_request_gpio()
。调用过程如下:
gpio_request()
gpiod_request()
chip->request(chip,gpio_chip_hwgpio(desc));
在pinctrl_msm.c中,重新定义了chip->request()。
msm_pinctrl_probe()
msm_register_gpiochip()
gc->request= msm_pinctrl_request_gpio;
这里msm_pinctrl_request_gpio()
会调pinctrl_request_gpio();
同样地,对于pinctrl_free_gpio()
、pinctrl_gpio_direction_input()
和pinctrl_gpio_direction_output()
也有类似说明。
因此在clientdevice驱动中,申请和释放gpio仍然要调gpio_request()
、gpio_free()
;设置gpio为input/output仍然要调gpio_direction_input()
和gpio_direction_output()
。
Pinctrl注册
全文以msm8916平台为例进行分析。
当tlmm加载时,msm_tlmm_v4_probe()
最后会调msm_pinctrl_probe()
,其中会将pinctrl.dtsi
中定义的pinctrlinfo解析出来,并且重新定义chip->request()
、chip->free()
等函数。
具体的调用关系如下图所示:
postcore_initcall(msm_tlmm_v4_drv_register); //Pinctrl-msm-tlmm-v4.c
msm_tlmm_v4_probe //匹配pinctrl.dtsi定义的compatible
msm_pinctrl_probe //pinctrl_msm.c
msm_pinctrl_get_drvdata(dd,pdev); //解析pinctrl.dtsi,保存到dd
msm_pinctrl_dt_parse_pintype(node,dd);
msm_pinctrl_dt_parse_pins(node,dd);
msm_register_gpiochip(dd); //定义gpio_request()、gpio_free()
gc->request= msm_pinctrl_request_gpio;
gc->free= msm_pinctrl_free_gpio;
msm_register_pinctrl(dd);
dd->pctl_dev= pinctrl_register(ctrl_desc, dd->dev, dd);
Pinstates
一个pinstate对应对pin脚的一种配置,一个pin脚可以配置多个状态,对状态的个数也没有限制。
state的定义和电源管理关系比较紧密,例如当设备active的时候,我们需要pincontroller将相关的一组pin设定为具体的设备功能,而当设备进入sleep状态的时候,需要pincontroller将相关的一组pin设定为普通GPIO,并精确的控制GPIO状态以便节省系统的功耗。
Pinctrl-state.h中给出了常用的3种状态:
- default:default状态表示设备处于active时的状态,一般在设备驱动的.resume中配置,另外在启动时也会配置pin脚为default状态。
- idle:idle状态表示系统处于idle时需要配置的pin脚状态,此时系统并没有进入深度休眠。
- sleep:sleep状态表示系统处于深度休眠时的pin脚状态,一般在设备驱动的.suspend中配置。
当然我们也可以定义任意形式的state,如“on”、“off”等。
goodix@5d{
compatible= "goodix,gt9xx";
reg= <0x5d>;
pinctrl-names= "gt9xx_int_active", "gt9xx_int_suspend";
pinctrl-0= <>9xx_int_active>;
pinctrl-1= <>9xx_int_sleep>;
interrupt-parent= <&msm_gpio>;
interrupts= <13 0x2>;
……
}
pinctrl-names定义了clientdevice用到的state列表。
- state有两种标识,一种就是pinctrl-names定义的字符串列表,另外一种就是ID。ID从0开始,依次加一。根据例子中的定义,stateID等于0(名字是"gt9xx_int_active")的state对应pinctrl-0属性,stateID等于1(名字是"gt9xx_int_suspend")的state对应pinctrl-1属性。
pinctrl-x是一个句柄(phandle)列表,每个句柄指向一个pinconfiguration。
Boot时配置default状态
如果pin只定义了default状态,那么在设备驱动中不需要再对该pin作处理,因为在启动时会自动设为default状态。
在加载驱动模块时,如果驱动和设备匹配,最终就会调到driver定义的probe函数。在这个过程中,如果使能了pinctrl,而且定义了pin的default状态,就会配置pin脚为该状态。
具体代码流程如下:
driver_probe_device(structdevice_driver *drv, struct device *dev)
{
really_probe(dev,drv);
pinctrl_bind_pins(dev); // 函数调用过程如下:
dev->pins->p= devm_pinctrl_get(dev);
dev->pins->default_state= pinctrl_lookup_state(dev->pins->p,
PINCTRL_STATE_DEFAULT);
pinctrl_select_state(dev->pins->p,dev->pins->default_state);
对于不使用pinctrl的平台,pinctrl_bind_pins(dev)直接返回0;
if(dev->bus->probe) {
ret= dev->bus->probe(dev);
}else if (drv->probe) {
ret= drv->probe(dev);
}
}
Pingroups
SOC上需要同时配置一组gpio来支持某些功能,如I2C、SPI、UART、SDC等,在-pinctrl.dtsi中将这些pin定义为一个group。
配置统一的情况
一组gpio在各个状态下的配置都相同,这种配置比较常见也比较简单。如i2c,在active和suspend状态下,SDA和SCL的配置都相同:active状态下都是配置为8mA上拉,suspend状态下都配置为2mA和nopull。
首先在msm8916_pinctrl.c中定义suspend和active状态下的pin脚配置信息,如下:
pmx_i2c_0{
qcom,pins= <&gp 7>, <&gp 6>; //使用gpio_6和gpio_7
qcom,num-grp-pins= <2>; //共两个gpio
qcom,pin-func= <3>; //复用功能为i2c
label = "pmx_i2c_0"; //表示同一组
i2c_0_active:i2c_0_active {
drive-strength= <8>;
bias-pull-up;
};
i2c_0_sleep:i2c_0_sleep {
drive-strength= <2>;
bias-disable;
};
};
然后在msm8916.dtsi中增加pinctrlinfo的引用:
i2c_0:i2c@78b6000 {
compatible= "qcom,i2c-msm-v2";
reg-names= "qup_phys_addr", "bam_phys_addr";
reg= <0x78b6000 0x600>,
<0x7884000 0x23000>;
interrupt-names= "qup_irq", "bam_irq";
interrupts= <0 96 0>, <0 238 0>;
clocks= <&clock_gcc clk_gcc_blsp1_ahb_clk>,
<&clock_gcc clk_gcc_blsp1_qup2_i2c_apps_clk>;
clock-names= "iface_clk", "core_clk";
qcom,clk-freq-out= <100000>;
qcom,clk-freq-in = <19200000>;
pinctrl-names= "i2c_active", "i2c_sleep";
pinctrl-0= <&i2c_0_active>;
pinctrl-1= <&i2c_0_sleep>;
qcom,master-id= <86>;
};
配置不统一的情况
如SDC,每个pin脚的active和sleep状态配置各不相同,需要分开设置。
1)在msm8916_pinctrl.c中分别定义各个pin的suspend和active状态下的配置信息,如下:
sdc:sdc {
qcom,pin-type-sdc;
qcom,num-pins= <6>;
#qcom,pin-cells= <1>;
};
pmx_sdc1_clk{
qcom,pins= <&sdc 0>;
qcom,num-grp-pins= <1>;
label= "sdc1-clk";
sdc1_clk_on:clk_on {
bias-disable;
drive-strength= <16>;
};
sdc1_clk_off:clk_off {
bias-disable;
drive-strength= <2>;
};
};
pmx_sdc1_cmd{
qcom,pins= <&sdc 1>;
qcom,num-grp-pins= <1>;
label= "sdc1-cmd";
sdc1_cmd_on:cmd_on {
bias-pull-up;
drive-strength= <10>;
};
sdc1_cmd_off:cmd_off {
bias-pull-up;
drive-strength= <2>;
};
};
pmx_sdc1_data{
qcom,pins= <&sdc 2>;
qcom,num-grp-pins= <1>;
label= "sdc1-data";
sdc1_data_on:data_on {
bias-pull-up;
drive-strength= <10>;
};
sdc1_data_off:data_off {
bias-pull-up;
drive-strength= <2>;
};
};
2)msm8916-cdp.dtsi中作出相应修改:
&sdhc_1{
vdd-supply= <&pm8916_l8>;
qcom,vdd-voltage-level= <2900000 2900000>;
qcom,vdd-current-level= <200 400000>;
vdd-io-supply= <&pm8916_l5>;
qcom,vdd-io-always-on;
qcom,vdd-io-lpm-sup;
qcom,vdd-io-voltage-level= <1800000 1800000>;
qcom,vdd-io-current-level= <200 60000>;
//qcom,pad-pull-on= <0x0 0x3 0x3>;
//qcom,pad-pull-off= <0x0 0x3 0x3>;
//qcom,pad-drv-on= <0x4 0x4 0x4>;
//qcom,pad-drv-off= <0x0 0x0 0x0>;
pinctrl-names= "active", "sleep";
pinctrl-0= <&sdc1_clk_on &sdc1_cmd_on &sdc1_data_on>;
pinctrl-1= <&sdc1_clk_off &sdc1_cmd_off &sdc1_data_off>;
qcom,nonremovable;
status= "ok";
};
对sdhc_2也是同样的配置。
另外还有一种情况,对于一组gpio,在不同state下pin_func定义不同的情况,如wifi,在active状态设置为wifi功能,在suspend状态下设置为普通gpio。
pinctrl@fd511000{
//...
pmx-wcnss-5wire-active{
qcom,pins= <&gp 40>, <&gp 41>, <&gp 42>, <&gp43>.
<&gp44>;
qcom,pin-func= <1>;
qcom,num-grp-pins= <5>;
label= "wcnss-5wire-active";
wcnss-5wire-active:wcnss-active {
drive-strength= <6>; / * 6MA */
bias-pull-up;
};
};
pmx-wcnss-5wire-suspend{
qcom,pins= <&gp 40>, <&gp 41>, <&gp 42>, <&gp43>.
<&gp44>;
qcom,pin-func= <0>;
qcom,num-grp-pins= <5>;
label= "wcnss-5wire-suspend";
wcnss-5wire-sleep:wcnss-sleep {
drive-strength= <6>; / * 6MA */
bias-pull-down;
};
};
};
PinctrlAPI
//获取该device对应的pinctrlhandler。
struct pinctrl *devm_pinctrl_get(struct device *dev);
// 查找name指定的pinctrlstate。
struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char*name);
// 配置pin脚为指定的state。
int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state);
Usecase
下面举例配置tp的中断脚。
1)在msm8916-pinctrl.dtsi中定义pinctrlinfo:
&soc{
tlmm_pinmux:pinctrl@1000000
gt9xx_int_pin{
▲ qcom,pins= <&gp 13>;
qcom,num-grp-pins= <1>;
qcom,pin-func= <0>;
label= "gt9xx_int_pin";
▲ gt9xx_int_active:active {
drive-strength= <2>;
bias-pull-up;
};
▲gt9xx_int_sleep:sleep {
drive-strength= <2>;
bias-disable;
};
};
}
2)在msm8916-cdp.dtsi中tp的节点中添加引用:
goodix@5d{
compatible= "goodix,gt9xx";
reg= <0x5d>;
▲ pinctrl-names= "gt9xx_int_active", "gt9xx_int_suspend";
▲ pinctrl-0= <>9xx_int_active>;
▲ pinctrl-1= <>9xx_int_sleep>;
▲ interrupt-parent= <&msm_gpio>;
interrupts= <13 0x2>;
//……
}
3)在tp驱动中添加配置。
a.定义pinctrl_info:
#define GOODIX_PINCTRL_STATE_SLEEP "gt9xx_int_suspend"
#define GOODIX_PINCTRL_STATE_DEFAULT "gt9xx_int_active"
struct gtp_pinctrl_info{
structpinctrl *pinctrl;
structpinctrl_state *gpio_state_active;
structpinctrl_state *gpio_state_suspend;
};
static struct gtp_pinctrl_info gt9xx_pctrl;
static int **gtp_pinctrl_init**(struct device *dev)
{
gt9xx_pctrl.pinctrl= ▲ devm_pinctrl_get(dev);
if(IS_ERR_OR_NULL(gt9xx_pctrl.pinctrl)) {
pr_err("%s:%dGetting pinctrl handle failed\n",
__func__,__LINE__);
return-EINVAL;
}
▲ gt9xx_pctrl.gpio_state_active= pinctrl_lookup_state(gt9xx_pctrl.pinctrl,
GOODIX_PINCTRL_STATE_DEFAULT);
if(IS_ERR_OR_NULL(gt9xx_pctrl.gpio_state_active)) {
pr_err("%s:Failed to get the active state pinctrl handle\n",
__func__,__LINE__);
return-EINVAL;
}
gt9xx_pctrl.gpio_state_suspend= pinctrl_lookup_state(
gt9xx_pctrl.pinctrl,
GOODIX_PINCTRL_STATE_SLEEP);
if(IS_ERR_OR_NULL(gt9xx_pctrl.gpio_state_suspend)) {
pr_err("%s:Failed to get the suspend state pinctrl handle\n",
__func__,__LINE__);
return-EINVAL;
}
return0;
}
b.在probe函数中初始化pinctrl_info,并设置state:
static int goodix_ts_probe(struct i2c_client *client, const structi2c_device_id *id)
{
goodix_parse_dt(&client->dev,pdata);
gtp_request_io_port(ts);
gtp_pinctrl_init(&ts->client->dev);
pinctrl_select_state(gt9xx_pctrl.pinctrl,gt9xx_pctrl.gpio_state_active);
// ……
}
c.在suspend()和resume()中分别设置为activestate和suspendstate:
static int goodix_ts_suspend(struct device *dev)
{
struct goodix_ts_data *ts = dev_get_drvdata(dev);
int ret = 0, i;
ret= pinctrl_select_state(gt9xx_pctrl.pinctrl,
gt9xx_pctrl.gpio_state_suspend);
if(ret)
pr_err("%s:Cannot set pin to suspend state",
__func__,__LINE__);
// ……
if(ts->use_irq)
gtp_irq_disable(ts);
// ……
return ret;
}
static int goodix_ts_resume(struct device *dev)
{
struct goodix_ts_data *ts = dev_get_drvdata(dev);
int ret = 0;
ret= pinctrl_select_state(gt9xx_pctrl.pinctrl,
gt9xx_pctrl.gpio_state_active);
if(ret)
pr_err("%s:Cannot set pin to suspend state",
__func__,__LINE__);
// ……
if(ts->use_irq)
gtp_irq_enable(ts);
// ……
returnret;
}