#加载TF并导入数据集
import tensorflow as tf
from tensorflow.contrib import rnn
from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #设置训练的超参数,学习率 训练迭代最大次数,输入数据的个数
learning_rate= 0.001 #(learning_rate)
training_iters = 100000
batch_size = 128 # 神经网络参数
n_inputs = 28 #输出层的n
n_steps = 28 # 长度
n_hidden = 128 # 隐藏层的神经元个数
n_classes = 10 # MNIST的分类类别 (0-9) # 定义输出数据及其权重
# 输入数据的占位符
x = tf.placeholder("float", [None, n_steps, n_inputs])
y = tf.placeholder("float", [None, n_classes]) # 定义权重
weights ={
'in': tf.Variable(tf.random_normal([n_inputs, n_hidden])),
'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
} biases = {
'in': tf.Variable(tf.random_normal([n_hidden,])),
'out': tf.Variable(tf.random_normal([n_classes, ]))
} #定义RNN模型
def RNN(X, weights, biases):
#把输入的X转化成X (128 batch * 28 steps ,28 inputs)
X = tf.reshape(X,[-1,n_inputs]) # 进入隐藏层
# X_in = (128 batch * 28 steps ,28 hidden) X_in = tf.matmul(X,weights['in']) + biases['in']
# X_in = (128 batch * 28 steps ,28 hidden)
X_in=tf.reshape(X_in,[-1,n_steps,n_hidden])
#采用LSTM循环神经网络单元 basic LSTM Cell
lstm_cell = tf.contrib.rnn.BasicLSTMCell(n_hidden, forget_bias=1.0,state_is_tuple=True)
# 初始化为0 lstm 单元 由 h_cell,h_state两部分组成
init_state=lstm_cell.zero_state(batch_size,dtype=tf.float32) # dynamic_rnn接受张量(batch ,steps,inputs)或者(steps,batch,inputs) 作为X_in
outputs,final_state=tf.nn.dynamic_rnn(lstm_cell,X_in,initial_state=init_state,time_major=False)
results=tf.matmul(final_state[1], weights['out']) + biases['out']
return results #定义损失函数和优化器,采用AdamOptimizer优化器
pred=RNN(x,weights,biases)
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))
train_op= tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # 定义模型预测结果及准确率计算方法
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) # 训练模型及评估模型 # 定义一个会话,启动图,每20次输出一次准确率
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
step = 0
# 训练,达到最大迭代次数
while step * batch_size < training_iters:
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_xs = batch_xs.reshape((batch_size, n_steps, n_inputs))
sess.run(train_op, feed_dict={x: batch_xs, y: batch_ys})
if step % 20 == 0:
print(sess.run(accuracy,feed_dict={x:batch_xs, y:batch_ys}))
step +=1