利用 sklearn.feature_extraction.text 中的 CountVectorizer 来实现
- 首先获取所有的文本信息
- 然后将文本信息转化为从 0 开始的数字
- 获取转换后的字符向量
参见如下代码:
>>> text_01 = "My name is Alex Lee." >>> text_02 = "I like singing and playing basketball." >>> text_03 = "I also like swimming during leisure time." >>> texts = [text_01, text_02, text_03] >>> texts ['My name is Alex Lee.', 'I like singing and playing basketball.', 'I also like swimming during leisure time.'] >>> import sklearn >>> from sklearn.feature_extraction.text import CountVectorizer >>> vect = CountVectorizer().fit(texts) >>> x = vect.transform(texts) >>> x <3x15 sparse matrix of type '<class 'numpy.int64'>' with 16 stored elements in Compressed Sparse Row format> >>> vect.get_feature_names() ['alex', 'also', 'and', 'basketball', 'during', 'is', 'lee', 'leisure', 'like', 'my', 'name', 'playing', 'singing', 'swimming', 'time'] >>> vect.vocabulary_ {'my': 9, 'name': 10, 'is': 5, 'alex': 0, 'lee': 6, 'like': 8, 'singing': 12, 'and': 2, 'playing': 11, 'basketball': 3, 'also': 1, 'swimming': 13, 'during': 4, 'leisure': 7, 'time': 14} >>> x <3x15 sparse matrix of type '<class 'numpy.int64'>' with 16 stored elements in Compressed Sparse Row format> >>> print(x) (0, 0) 1 (0, 5) 1 (0, 6) 1 (0, 9) 1 (0, 10) 1 (1, 2) 1 (1, 3) 1 (1, 8) 1 (1, 11) 1 (1, 12) 1 (2, 1) 1 (2, 4) 1 (2, 7) 1 (2, 8) 1 (2, 13) 1 (2, 14) 1 >>> x.toarray() array([[1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0], [0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1]], dtype=int64)