2.医学图像配准的框架和主要工作 - 学习笔记

刚刚入门的医学图像配准小白,做一下笔记

一、配准框架(Registration Framework)

2.医学图像配准的框架和主要工作 - 学习笔记
Fixed Image:固定图像
Moving Image:浮动图像(参照固定图像进行形变)
Interpolator:插值(由于图像进行形变时会出现像素点的丢失,所以通过插值进行恢复)
Metric:测量两个图像相似性的标准(重点关注)
Optimizer:求优
Transform:实现转换矩阵

二、配准分类(Classification)

1.基于Dimensionality
-2D-2D, 3D-3D, 2D-3D(更难)

2.基于特征(Nature of registration basis)
-Image based: Extrinsic, Intrinsic
-Non-image based

3.基于转换的属性(Nature of the transformation)
-Rigid, Affine, Projective(投影), Curved

4.基于交互的方式(Interaction)
-Interactive, Semi-automatic, Automatic

5.基于模态(Modalities)
-Monomodal, Multimodal, Modality to modal

6.基于处理的对象(Subject)
-Intra-subject(同个患者), Inter-subject(不同患者), Atlas(解剖图谱)

三、什么是坐标系的转换(Transformation)
1.刚性配准(Rigid)
Translations and rotations(不改变细节)

2.仿射配准(Affine)
Also allows scaling and shearing (剪切和放大缩小,对边需要保持平行)

3.曲线配准(Curved)
Allows the mapping of straight lines to curves

4.Perspective
The parallelism of lines need not be perserved.

2.医学图像配准的框架和主要工作 - 学习笔记
四、配准算法(Registration algorithms)
Method used to find the transformation(可以帮助找到坐标转换矩阵,怎样实现融合)

1.Rigid and Affine
-Landmark based
-Information theory based
-Edge based
-Voxel intensity based

2.Non-rigid
-Registration using basis functions
-Registration using splines
-Physics based

3.Elastic, Fluid, Optical flow, etc.

(1) Landmark based

2.医学图像配准的框架和主要工作 - 学习笔记
— Indentifying corresponding points in the images and inferring the image transformation

—Types of landmatks:
-Intrinsic: internal anatomical structure
-Extrinsic: artificial objects attached to the patients

—Computing the average or ‘centroid’ of each set of points → translation

(2)Surfaced based
-Extracting corresponding suifaces
-Computing the transformation by minimizing some measure of distance between the two surfaces
-The ‘Head and Hat’ Algorithm

(3)Voxel intensity based

2.医学图像配准的框架和主要工作 - 学习笔记

-Calculating the registration transformation by optimizing some measure calculated directly from the voxel values in the images(计算两个图像之间灰度的差异,找到最小差异从而实现配准)

-Registration by minimizing intensity difference
-Correlation techniques(相关性)
-Ratio image uniformity(一致性比率的最大值)
-Parititioned Intensity Uniformity

(4)Information theory based

2.医学图像配准的框架和主要工作 - 学习笔记

To maximinze the amount of shared information in two images(可以把两个图像相对的熵进行一个和的提取,然后减小其中所含的信息量,最后形成配准的最优化)

-Joint entropy(衡量混合后图像信息量的总和,达到最小时,图像配准达到最好)

-Mutual information(互信息,衡量一个图像所含信息的多少,用来解释两个图像是否最好的匹配,通常求最大值)

-Normalized Mutual Information

(5) Registration using basis functions
-Represent the deformation field using a set of basis functions

(6)Registration using splines

五、优化算法(Optimization)

假设一个配准的初始点,然后逐渐进行反复的优化,经过反复的配准,把上一次的状态转变到第一次优化配准完后的状态,在此基础上,在循环实现下一次的配准目标,在此基础上,可以通过估算
下一次的优化位置,来进行下一次优化测度的测量,这种测度有可能是欠或者过,最终会停留下来,得到一个满意的结果。
-an initial estimate of the transformation is gradually refined
-In each iteration, the current estimate of the transformation is uesd to calculate a similarity measure
-makes another estimate of the transformation, evaluates the similarity measure again, and continues until the algorithm converges

六、可视化(Visualization)

2.医学图像配准的框架和主要工作 - 学习笔记

-Color overlay(彩色叠加,实现差异的变化)
-Interleaved pixel or chessboard fusion(将两幅图像切成小方块,在他们相邻的方块之间显示不同的图像,通过方块之间的衔接,判断配准是否准确)
-Dynamic alternating display
-Split view displays(两个显示器)
-Subtraction images(做减法)

七、金标准(Validation)
Measurements using computer generated models, images of physical phantoms of accurately known construction and dimensions and images of patients or volunteers.

上一篇:3.服务注册与发现-go操作consul(HTTP服务的注册与发现)


下一篇:springboot使用过滤器和拦截器设计需要登录态接口