org.apache.dubbo 服务注册原理源码分析:
本文主要针对 dubbo-spring-boot-starter 2.7.7版本, 对应的 org.apache.dubbo 2.7.7 版本的源码。
本文主要从以下几个点来分析:
- 前置知识点--Dubbo的SPI机制。
- 服务发布注册的入口。
- 服务发布源码分析
- 服务注册源码分析。
Dubbo的SPI机制:
没接触过 Dubbo SPI 的小伙伴可以参考我之前写的 关于 Dubbo SPI的相关博文。虽然版本又差异,但是 SPI机制是一样的。这里简单做一下描述。
关于 Dubbo 中提供的拓展点,可以参考官方文档的说明:http://dubbo.apache.org/zh-cn/docs/dev/impls/load-balance.html
扩展点的特征:在类级别标准`@SPI(RandomLoadBalance.NAME)`.其中,括号内的数据,表示当前扩展点的默认扩展点。另一个是@Adaptive
- @SPI 表示当前这个接口是一个扩展点,可以实现自己的扩展实现,默认的扩展点是DubboProtocol。
- @Adaptive 表示一个自适应扩展点,在方法级别上,会动态生成一个适配器类
例如:
@SPI(RandomLoadBalance.NAME)
public interface LoadBalance {
@Adaptive("loadbalance")
<T> Invoker<T> select(List<Invoker<T>> invokers, URL url, Invocation invocation) throws RpcException;
}
在 Dubbo 中,拓展点分为以下三类:
- 指定名称的扩展点:ExtensionLoader.getExtensionLoader(Protocol.class).getExtension("name")。
- 自适应扩展点:ExtensionLoader.getExtensionLoader(Protocol.class).getAdaptiveExtension()。
- 激活扩展点:ExtensionLoader.getExtensionLoader(Protocol.class).getActiveExtension。
自定义负载均衡拓展点 :
在 Dubbo 中,想要拓展拓展点,只需要以下几个步骤
1.创建拓展点实现类 (以LoadBalance为例):
public class WuzzLoadBalance extends AbstractLoadBalance {
@Override
protected <T> Invoker<T> doSelect(List<Invoker<T>> invokers, URL url, Invocation invocation) {
return null;
}
}
2.在指定文件夹下创建以拓展点全路径名(org.apache.dubbo.rpc.cluster.LoadBalance)的文件,Dubbo 中有多个目录都可以配置拓展点,这里用 resource/META-INF/dubbo/
wuzzLoadBalance=com.wuzz.demo.loadbalance.WuzzLoadBalance
3.搞个测试类进行测试:
可以发现我们已经可以拿到我们自己的实现类了。那么他具体是怎么实现的呢?让我们继续往下看
Dubbo的拓展点源码:
接下去我们来看看三种拓展点的具体实现:
指定名称的扩展点:以 ExtensionLoader.getExtensionLoader(LoadBalance.class).getExtension("wuzzLoadBalance") 为例
先来看前半段 : ExtensionLoader#getExtensionLoader
public static <T> ExtensionLoader<T> getExtensionLoader(Class<T> type) { //....省略判断逻辑 // 从缓存中获取该 loader ExtensionLoader<T> loader = (ExtensionLoader<T>) EXTENSION_LOADERS.get(type); if (loader == null) { // 如果从缓存中获取不到,则new 一个,并且保存起来 EXTENSION_LOADERS.putIfAbsent(type, new ExtensionLoader<T>(type)); // 然后 get loader = (ExtensionLoader<T>) EXTENSION_LOADERS.get(type); } return loader; }
该方法需要一个Class类型的参数,该参数表示希望加载的扩展点类型,该参数必须是接口,且该接口必须被@SPI注解注释,否则拒绝处理。检查通过之后首先会检查ExtensionLoader缓存中是否已经存在该扩展对应的ExtensionLoader,如果有则直接返回,否则创建一个新的ExtensionLoader负责加载该扩展实现,同时将其缓存起来。可以看到对于每一个扩展,dubbo中只会有一个对应的ExtensionLoader实例。进入到构造方法:
private ExtensionLoader(Class<?> type) { this.type = type; // 判断类型,很显然 这里会走后面 objectFactory = (type == ExtensionFactory.class ? null : ExtensionLoader.getExtensionLoader(ExtensionFactory.class).getAdaptiveExtension()); }
咱们姑且先当这个ExtensionLoader实例 已经存在缓存中,那么我们直接进入到 getExtension("wuzzLoadBalance") 这段代码流程中
public T getExtension(String name) { if (StringUtils.isEmpty(name)) { throw new IllegalArgumentException("Extension name == null"); } if ("true".equals(name)) {//如果name=true,表示返回一个默认的扩展点 return getDefaultExtension(); } final Holder<Object> holder = getOrCreateHolder(name);//缓存一下,如果实例已经加载过了,直接从缓存读取 Object instance = holder.get(); if (instance == null) { synchronized (holder) { instance = holder.get(); if (instance == null) { instance = createExtension(name);//根据名称创建实例 holder.set(instance); } } } return (T) instance; }
createExtension:仍然是根据名称创建扩展,getExtensionClasses() 加载指定路径下的所有文件
private T createExtension(String name) { Class<?> clazz = getExtensionClasses().get(name); if (clazz == null) { throw findException(name); } try { T instance = (T) EXTENSION_INSTANCES.get(clazz); if (instance == null) { EXTENSION_INSTANCES.putIfAbsent(clazz, clazz.newInstance()); instance = (T) EXTENSION_INSTANCES.get(clazz); } injectExtension(instance); Set<Class<?>> wrapperClasses = cachedWrapperClasses; if (CollectionUtils.isNotEmpty(wrapperClasses)) { for (Class<?> wrapperClass : wrapperClasses) { instance = injectExtension((T) wrapperClass.getConstructor(type).newInstance(instance)); } } initExtension(instance); return instance; } catch (Throwable t) { throw new IllegalStateException("Extension instance (name: " + name + ", class: " + type + ") couldn‘t be instantiated: " + t.getMessage(), t); } }
这个方法内主要做了以下三件事
- 加载指定路径下的文件内容,保存到集合中
- 会对存在依赖注入的扩展点进行依赖注入
- 会对存在Wrapper类的扩展点,实现扩展点的包装
先来看文件内容的加载流程:
private Map<String, Class<?>> getExtensionClasses() { Map<String, Class<?>> classes = cachedClasses.get(); if (classes == null) { synchronized (cachedClasses) { classes = cachedClasses.get(); if (classes == null) { // 真正加载类的方法 classes = loadExtensionClasses(); cachedClasses.set(classes); } } } return classes; }
ExtensionLoader#loadExtensionClasses:
private Map<String, Class<?>> loadExtensionClasses() { cacheDefaultExtensionName(); Map<String, Class<?>> extensionClasses = new HashMap<>(); // 这里循环加载, for (LoadingStrategy strategy : strategies) { // 这里调用两次,可以从下面的参数中得知可能是为了做兼容 loadDirectory(extensionClasses, strategy.directory(), type.getName(), strategy.preferExtensionClassLoader(), strategy.overridden(), strategy.excludedPackages()); loadDirectory(extensionClasses, strategy.directory(), type.getName().replace("org.apache", "com.alibaba"), strategy.preferExtensionClassLoader(), strategy.overridden(), strategy.excludedPackages()); } return extensionClasses; }
我们可以断点看看这个strategies :
这里对应的三个实现实质上是分别对应的三个拓展点配置目录:
- META-INF/dubbo/internal/
- META-INF/dubbo/
- META-INF/services/
接下去具体的加载细节就不去深挖了,我们只要知道,这里通过这 三个路径去把我们的拓展点加载出来并且缓存起来:
这才使得我们 getExtension("wuzzLoadBalance") 能拿到我们自己的实现.
我们还需要关注的就是拓展点的包装 instance = injectExtension((T) wrapperClass.getConstructor(type).newInstance(instance)),我们直接断点看一下:
2.7.8 源码在此处有些许差别,但是最终也是如此包装。
这里以 Protocol 为例,发现 cachedWrapperClasses 里面有3个 wrapper类,且返回的 instance 并不是一个 DubboProtocol 这么简单,经过了层层包装。那么为什么呢?我们来看一下 Protocol 拓展点文件:
这里我们可以得出结论,在加载拓展点指定文件的时候,具有Wrapper 实现的时候,会将Wrapper 缓存到 cachedWrapperClasses 集合中,且会将这些拓展点进行包装。
自适应扩展点:
什么叫自适应扩展点呢?我们先演示一个例子,在下面这个例子中,我们传入一个Protocol接口,它会返回一个AdaptiveProtocol。这个就叫自适应。
Protocol protocol = ExtensionLoader.getExtensionLoader(Protocol.class).getAdaptiveExtension();
我们可以看到 Protocol这个类的 export方法上面有一个注解@Adaptive。 这个就是一个自适应扩展点的标识。它可以修饰在类上,也可以修饰在方法上面。这两者有什么区别呢? 简单来说,放在类上,说明当前类是一个确定的自适应扩展点的类。如果是放在方法级别,那么需要生成一个动态字节码,来进行转发。 拿Protocol这个接口来说,它里面定义了export和refer两个抽象方法,这两个方法分别带有@Adaptive的标识,标识是一个自适应方法。 我们知道Protocol是一个通信协议的接口,具体有多种实现,那么这个时候选择哪一种呢? 取决于我们在使用dubbo的时候所配置的协议名称。而这里的方法层面的Adaptive就决定了当前这个方法会采用何种协议来发布服务。
我们直接进入 ExtensionLoader#getAdaptiveExtension 获取自适应拓展点的源码流程:
public T getAdaptiveExtension() { // 又是缓存中获取 Object instance = cachedAdaptiveInstance.get(); if (instance == null) { if (createAdaptiveInstanceError != null) { throw new IllegalStateException("Failed to create adaptive instance: " + createAdaptiveInstanceError.toString(), createAdaptiveInstanceError); } // 双重检查锁 synchronized (cachedAdaptiveInstance) { instance = cachedAdaptiveInstance.get(); if (instance == null) { try { instance = createAdaptiveExtension(); cachedAdaptiveInstance.set(instance); } catch (Throwable t) { createAdaptiveInstanceError = t; throw new IllegalStateException("Failed to create adaptive instance: " + t.toString(), t); } } } } return (T) instance; }
这部分逻辑没有特殊的地方,无非就是缓存+双重检查。然后进入创建自适应拓展点的代码 : ExtensionLoader#createAdaptiveExtension,
创建自适应拓展点:ExtensionLoader#createAdaptiveExtension,这个方法中做两个事情
- 获得一个自适应扩展点实例
- 实现依赖注入
private T createAdaptiveExtension() { try { return injectExtension((T) getAdaptiveExtensionClass().newInstance()); } catch (Exception e) { throw new IllegalStateException("Can‘t create adaptive extension " + type + ", cause: " + e.getMessage(), e); } }
然后进入 ExtensionLoader#getAdaptiveExtensionClass :
private Class<?> getAdaptiveExtensionClass() {
getExtensionClasses();
if (cachedAdaptiveClass != null) {
return cachedAdaptiveClass;
}
return cachedAdaptiveClass = createAdaptiveExtensionClass();
}
getExtensionClasses()这个方法在前面讲过了,会加载当前传入的类型的所有扩展点,保存在一个hashmap中 这里有一个判断逻辑,如果 cachedApdaptiveClas!=null ,直接返回这个cachedAdaptiveClass,这个cachedAdaptiveClass是一个什么?
cachedAdaptiveClass是在 加载解析/META-INF/dubbo下的扩展点的时候加载进来的。在加载完之后如果这个类有@Adaptive标识,则会赋值赋值而给cachedAdaptiveClass
createAdaptiveExtensionClass:动态生成字节码,然后进行动态加载。那么这个时候锁返回的class,如果加载的是Protocol.class,应该是Protocol$Adaptive 这个cachedDefaultName实际上就是扩展点接口的@SPI注解对应的名字,如果此时加载的是Protocol.class,那么cachedDefaultName=dubbo
private Class<?> createAdaptiveExtensionClass() { String code = new AdaptiveClassCodeGenerator(type, cachedDefaultName).generate(); ClassLoader classLoader = findClassLoader(); org.apache.dubbo.common.compiler.Compiler compiler = ExtensionLoader.getExtensionLoader(org.apache.dubbo.common.compiler.Compiler.class).getAdaptiveExtension(); return compiler.compile(code, classLoader); }
例如根据 ExtensionLoader.getExtensionLoader(Protocol.class).getAdaptiveExtension() 生成的自适应拓展点就是:
package org.apache.dubbo.rpc; import org.apache.dubbo.common.extension.ExtensionLoader; public class Protocol$Adaptive implements org.apache.dubbo.rpc.Protocol { public void destroy() { throw new UnsupportedOperationException("The method public abstract void org.apache.dubbo.rpc.Protocol.destroy() of interface org.apache.dubbo.rpc.Protocol is not adaptive method!"); } public int getDefaultPort() { throw new UnsupportedOperationException("The method public abstract int org.apache.dubbo.rpc.Protocol.getDefaultPort() of interface org.apache.dubbo.rpc.Protocol is not adaptive method!"); } public org.apache.dubbo.rpc.Exporter export(org.apache.dubbo.rpc.Invoker arg0) throws org.apache.dubbo.rpc.RpcException { if (arg0 == null) throw new IllegalArgumentException("org.apache.dubbo.rpc.Invoker argument == null"); if (arg0.getUrl() == null) throw new IllegalArgumentException("org.apache.dubbo.rpc.Invoker argument getUrl() == null"); org.apache.dubbo.common.URL url = arg0.getUrl(); String extName = ( url.getProtocol() == null ? "dubbo" : url.getProtocol() ); if(extName == null) throw new IllegalStateException("Failed to get extension (org.apache.dubbo.rpc.Protocol) name from url (" + url.toString() + ") use keys([protocol])"); org.apache.dubbo.rpc.Protocol extension = (org.apache.dubbo.rpc.Protocol)ExtensionLoader.getExtensionLoader(org.apache.dubbo.rpc.Protocol.class).getExtension(extName); return extension.export(arg0); } public java.util.List getServers() { throw new UnsupportedOperationException("The method public default java.util.List org.apache.dubbo.rpc.Protocol.getServers() of interface org.apache.dubbo.rpc.Protocol is not adaptive method!"); } public org.apache.dubbo.rpc.Invoker refer(java.lang.Class arg0, org.apache.dubbo.common.URL arg1) throws org.apache.dubbo.rpc.RpcException { if (arg1 == null) throw new IllegalArgumentException("url == null"); org.apache.dubbo.common.URL url = arg1; String extName = ( url.getProtocol() == null ? "dubbo" : url.getProtocol() ); if(extName == null) throw new IllegalStateException("Failed to get extension (org.apache.dubbo.rpc.Protocol) name from url (" + url.toString() + ") use keys([protocol])"); org.apache.dubbo.rpc.Protocol extension = (org.apache.dubbo.rpc.Protocol)ExtensionLoader.getExtensionLoader(org.apache.dubbo.rpc.Protocol.class).getExtension(extName); return extension.refer(arg0, arg1); } }
关于objectFactory:
在injectExtension这个方法中,我们发现入口出的代码首先判断了objectFactory这个对象是否为空。这个是在哪里初始化的呢?实际上我们在获得ExtensionLoader的时候,就对objectFactory进行了初始化。
private ExtensionLoader(Class<?> type) { this.type = type; objectFactory = (type == ExtensionFactory.class ? null : ExtensionLoader.getExtensionLoader(ExtensionFactory.class).getAdaptiveExtension()); }
然后通过ExtensionLoader.getExtensionLoader(ExtensionFactory.class).getAdaptiveExtension()去获得一个自适应的扩展点,进入ExtensionFactory这个接口中,可以看到它是一个扩展点,并且有一个自己实现的自适应扩展点AdaptiveExtensionFactory; 注意:@Adaptive加载到类上表示这是一个自定义的适配器类,表示我们再调用getAdaptiveExtension方法的时候,不需要走上面这么复杂的过程。会直接加载到AdaptiveExtensionFactory。然后在getAdaptiveExtensionClass()方法处有判断,就是上文提到的 cachedAdaptiveClass。
@Adaptive public class AdaptiveExtensionFactory implements ExtensionFactory { private final List<ExtensionFactory> factories; public AdaptiveExtensionFactory() { ExtensionLoader<ExtensionFactory> loader = ExtensionLoader.getExtensionLoader(ExtensionFactory.class); List<ExtensionFactory> list = new ArrayList<ExtensionFactory>(); for (String name : loader.getSupportedExtensions()) { list.add(loader.getExtension(name)); } factories = Collections.unmodifiableList(list); } @Override public <T> T getExtension(Class<T> type, String name) { for (ExtensionFactory factory : factories) { T extension = factory.getExtension(type, name); if (extension != null) { return extension; } } return null; } }
我们可以看到除了自定义的自适应适配器类以外,还有两个实现类,一个是SPI,一个是Spring,AdaptiveExtensionFactory轮询这2个,从一个中获取到就返回。
激活扩展点:
自动激活扩展点,有点类似 springboot 的时候用到的 conditional,根据条件进行自动激活。但是这里设计的初衷是,对于一个类会加载多个扩展点的实现,这个时候可以通过自动激活扩展点进行动态加载, 从而简化配置我们的配置工作
@Activate提供了一些配置来允许我们配置加载条件,比如group过滤,比如key过滤。举个例子,我们可以看看org.apache.dubbo.Filter这个类,它有非常多的实现,比如说CacheFilter,这个缓存过滤器,配置信息如下group表示客户端和和服务端都会加载,value表示url中有cache_key的时候
@Activate(group = {CONSUMER, PROVIDER}, value = CACHE_KEY)
public class CacheFilter implements Filter {
}
通过下面这段代码,演示关于Filter的自动激活扩展点的效果。没有添加“红色部分的代码”时,list的结果是10,添加之后list的结果是11. 会自动把cacheFilter加载进来
ExtensionLoader<Filter> loader = ExtensionLoader.getExtensionLoader(Filter.class);
URL url = new URL("", "", 0);
url = url.addParameter("cache", "cache");
List<Filter> filters = loader.getActivateExtension(url, "cache");
System.out.println(filters.size());
服务发布注册的入口:
@DubboComponentScan:
在我们使用 Dubbo 构建服务的时候,我们通常需要配置一个 Dubbo Service 的扫描路径。那么这个注解应该是比较关键的。我们进入到这个注解的源码来开始揭开Dubbo的神秘面纱。
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Import(DubboComponentScanRegistrar.class)
public @interface DubboComponentScan {
//.......
}
我们看到了熟悉的东西:@Import(DubboComponentScanRegistrar.class) ,跟进去我们发现该类 实现了 ImportBeanDefinitionRegistrar 接口,该接口提供了类的注册的回调。也就是说DubboComponentScanRegistrar 最后会调用 registerBeanDefinitions 方法:
@Override
public void registerBeanDefinitions(AnnotationMetadata importingClassMetadata, BeanDefinitionRegistry registry) {
// 获取到元数据中配置的扫描路径,可以是多个,所以这里是集合
Set<String> packagesToScan = getPackagesToScan(importingClassMetadata);
// 注册指定的bean
registerServiceAnnotationBeanPostProcessor(packagesToScan, registry);
// 注册通用的bean
// @since 2.7.6 Register the common beans
registerCommonBeans(registry);
}
DubboComponentScanRegistrar#getPackagesToScan 这个方法中就是获取 DubboComponentScan 配置的参数,进行组装返回。
主要关注 DubboComponentScanRegistrar#registerServiceAnnotationBeanPostProcessor 方法:
private void registerServiceAnnotationBeanPostProcessor(Set<String> packagesToScan, BeanDefinitionRegistry registry) {
// 构建一个rootBeanDefinition
BeanDefinitionBuilder builder = rootBeanDefinition(ServiceAnnotationBeanPostProcessor.class);
// 将前面组装的扫描路径作为一个属性放到 ServiceAnnotationBeanPostProcessor 中
builder.addConstructorArgValue(packagesToScan);
builder.setRole(BeanDefinition.ROLE_INFRASTRUCTURE);
AbstractBeanDefinition beanDefinition = builder.getBeanDefinition();
//注册该Bean,毋庸置疑,这个Bean 就是 ServiceAnnotationBeanPostProcessor
BeanDefinitionReaderUtils.registerWithGeneratedName(beanDefinition, registry);
}
可以看到,ServiceAnnotationBeanPostProcessor 被标记了过时,后续可能会有点变化。我们先来看一下 ServiceAnnotationBeanPostProcessor 的类图 :
从类图可以看出,在该Bean初始化前后,会调用好几个回调方法,其中 BeanDefinitionRegistryPostProcessor 就是Bean 注册后会调用一个 postProcessBeanDefinitionRegistry 方法,该方法在其父类中:
@Override
public void postProcessBeanDefinitionRegistry(BeanDefinitionRegistry registry) throws BeansException {
// 注册一个监听器,这个是很关键的,等等需要去看这个类
// @since 2.7.5
registerBeans(registry, DubboBootstrapApplicationListener.class);
// 获取到那个扫描路径
Set<String> resolvedPackagesToScan = resolvePackagesToScan(packagesToScan);
if (!CollectionUtils.isEmpty(resolvedPackagesToScan)) {
// 进行扫描 DubboService 进行注入
registerServiceBeans(resolvedPackagesToScan, registry);
} else {
if (logger.isWarnEnabled()) {
logger.warn("packagesToScan is empty , ServiceBean registry will be ignored!");
}
}
}
然后我们重点看 ServiceClassPostProcessor#registerServiceBeans
private void registerServiceBeans(Set<String> packagesToScan, BeanDefinitionRegistry registry) {
// 注册一个扫描器
DubboClassPathBeanDefinitionScanner scanner =
new DubboClassPathBeanDefinitionScanner(registry, environment, resourceLoader);
// Bean 名字解析相关
BeanNameGenerator beanNameGenerator = resolveBeanNameGenerator(registry);
scanner.setBeanNameGenerator(beanNameGenerator);
// 通过注解过滤
// refactor @since 2.7.7
serviceAnnotationTypes.forEach(annotationType -> {
scanner.addIncludeFilter(new AnnotationTypeFilter(annotationType));
});
// 循环遍历我们配置的扫描路径
for (String packageToScan : packagesToScan) {
// 扫描
// Registers @Service Bean first
scanner.scan(packageToScan);
// 拼装
// Finds all BeanDefinitionHolders of @Service whether @ComponentScan scans or not.
Set<BeanDefinitionHolder> beanDefinitionHolders =
findServiceBeanDefinitionHolders(scanner, packageToScan, registry, beanNameGenerator);
if (!CollectionUtils.isEmpty(beanDefinitionHolders)) {
// 遍历拼装好的 BeanDefinitionHolder
for (BeanDefinitionHolder beanDefinitionHolder : beanDefinitionHolders) {
//注册Bean
registerServiceBean(beanDefinitionHolder, registry, scanner);
}
//.......
} else {
// .......
}
}
}
来看一下注解过滤中的serviceAnnotationTypes ,其实一目了然,DubboService 是新版的修改,避免与 Spring的 Service注解重名,org.apache.dubbo.config.annotation.Service 是兼容老版本,com.alibaba.dubbo.config.annotation.Service 也是为了兼容。
private final static List<Class<? extends Annotation>> serviceAnnotationTypes = asList(
// @since 2.7.7 Add the @DubboService , the issue : https://github.com/apache/dubbo/issues/6007
DubboService.class,
// @since 2.7.0 the substitute @com.alibaba.dubbo.config.annotation.Service
Service.class,
// @since 2.7.3 Add the compatibility for legacy Dubbo‘s @Service , the issue : https://github.com/apache/dubbo/issues/4330
com.alibaba.dubbo.config.annotation.Service.class
);
然后我们进入主线逻辑 ServiceClassPostProcessor#registerServiceBean
private void registerServiceBean(BeanDefinitionHolder beanDefinitionHolder, BeanDefinitionRegistry registry,
DubboClassPathBeanDefinitionScanner scanner) {
// 获取到需要注册的Dubbo Service 的 bean class
Class<?> beanClass = resolveClass(beanDefinitionHolder);
// 获取都 Dubbo Service 的 注解元数据
Annotation service = findServiceAnnotation(beanClass);
/**
* The {@link AnnotationAttributes} of @Service annotation
* 获取到我们注解上面配置的参数信息
*/
AnnotationAttributes serviceAnnotationAttributes = getAnnotationAttributes(service, false, false);
// 获取该实现的接口
Class<?> interfaceClass = resolveServiceInterfaceClass(serviceAnnotationAttributes, beanClass);
// 获取实现类 类名
String annotatedServiceBeanName = beanDefinitionHolder.getBeanName();
// 该方法主要是构建了一个ServiceBean
AbstractBeanDefinition serviceBeanDefinition =
buildServiceBeanDefinition(service, serviceAnnotationAttributes, interfaceClass, annotatedServiceBeanName);
// ServiceBean Bean name
// 获取类名,比如这里是 ServiceBean:com.wuzz.demo.api.HelloService
String beanName = generateServiceBeanName(serviceAnnotationAttributes, interfaceClass);
if (scanner.checkCandidate(beanName, serviceBeanDefinition)) { // check duplicated candidate bean
// 然后调用注册方法
registry.registerBeanDefinition(beanName, serviceBeanDefinition);
// ......
} else {
//.......
}
}
源码跟到这里,我们应该知道,这里注册了一个 ServiceBean ,所以跟进这个类的构造,但是发现什么都没做,但是这个时候我们需要想起来,之前 ServiceClassPostProcessor#postProcessBeanDefinitionRegistry 方法内初始化了一个监听器 DubboBootstrapApplicationListener,我们看一下该监听器监听了什么:
@Override
public void onApplicationContextEvent(ApplicationContextEvent event) {
if (event instanceof ContextRefreshedEvent) {
onContextRefreshedEvent((ContextRefreshedEvent) event);
} else if (event instanceof ContextClosedEvent) {
onContextClosedEvent((ContextClosedEvent) event);
}
}
从这个代码可以看出,这个监听器必然执行,在 Spring 上下文刷新完毕的时候走 DubboBootstrapApplicationListener#onContextRefreshedEvent
private void onContextRefreshedEvent(ContextRefreshedEvent event) {
dubboBootstrap.start();
}
终于看到了曙光,原来 Dubbo 的初始化入口在这里。附上这个流程的流程图:
服务发布源码分析:
通过上面的分析,我们知道了服务得发布入口在 DubboBootstrap#start:
public DubboBootstrap start() {
// 原子操作,避免并发问题
if (started.compareAndSet(false, true)) {
ready.set(false);
initialize();//初始化
if (logger.isInfoEnabled()) {
logger.info(NAME + " is starting...");
}
// 1. export Dubbo Services
exportServices(); // 发布服务
// Not only provider register
if (!isOnlyRegisterProvider() || hasExportedServices()) {
// 2. export MetadataService
exportMetadataService(); // 发布元数据服务
//3. Register the local ServiceInstance if required
registerServiceInstance(); // 注册服务实例
}
// 客户端相关的操作
referServices();
if (asyncExportingFutures.size() > 0) {
new Thread(() -> {
try {
this.awaitFinish();
} catch (Exception e) {
logger.warn(NAME + " exportAsync occurred an exception.");
}
ready.set(true);
if (logger.isInfoEnabled()) {
logger.info(NAME + " is ready.");
}
}).start();
} else {
ready.set(true);
if (logger.isInfoEnabled()) {
logger.info(NAME + " is ready.");
}
}
if (logger.isInfoEnabled()) {
logger.info(NAME + " has started.");
}
}
return this;
}
其中 initialize 方法,就是初始化服务发布的相关配置信息:
private void initialize() {
if (!initialized.compareAndSet(false, true)) {
return;
}
// 初始化拓展外部化配置
ApplicationModel.initFrameworkExts();
// 如果配置了中心配置,如 dubbo-admin,则进行初始化
startConfigCenter();
// 如果有必要,注册到中心配置
useRegistryAsConfigCenterIfNecessary();
// 加载远程配置
loadRemoteConfigs();
// 检查全局配置
checkGlobalConfigs();
// 初始化元数据服务
initMetadataService();
// 初始化事件监听器
initEventListener();
if (logger.isInfoEnabled()) {
logger.info(NAME + " has been initialized!");
}
}
目前该初始化流程不影响我们继续看服务的发布流程,所以我们这里直接进入 DubboBootstrap#exportServices
private void exportServices() {
// 遍历我们需要发布的服务实现类,进行发布
configManager.getServices().forEach(sc -> {
// TODO, compatible with ServiceConfig.export()
// 这里就是之前将我们需要发布的 DubboService 包装成 ServiceBean
// 而ServiceBean 是 ServiceConfig 的子类
ServiceConfig serviceConfig = (ServiceConfig) sc;
serviceConfig.setBootstrap(this);
// 异步发布?
if (exportAsync) {//调用线程池+Futrue 发布
ExecutorService executor = executorRepository.getServiceExporterExecutor();
Future<?> future = executor.submit(() -> {
sc.export();
exportedServices.add(sc);
});
asyncExportingFutures.add(future);
} else {// 同步发布
sc.export();
exportedServices.add(sc);// 发布完添加到发布服务的集合中
}
});
}
无论同步/异步 发布,均会走到 ServiceConfig#export 方法中:
public synchronized void export() {
// 是否需要发布
if (!shouldExport()) {
return;
}
// 检查 bootstrap是否初始化
if (bootstrap == null) {
bootstrap = DubboBootstrap.getInstance();
bootstrap.init();
}
// 检查相关配置
checkAndUpdateSubConfigs();
// 初始化元数据
//init serviceMetadata
serviceMetadata.setVersion(version);
serviceMetadata.setGroup(group);
serviceMetadata.setDefaultGroup(group);
serviceMetadata.setServiceType(getInterfaceClass());
serviceMetadata.setServiceInterfaceName(getInterface());
serviceMetadata.setTarget(getRef());
// 是否延迟发布
if (shouldDelay()) {// 构建一个定时任务
DELAY_EXPORT_EXECUTOR.schedule(this::doExport, getDelay(), TimeUnit.MILLISECONDS);
} else {
// 直接发布
doExport();
}
exported();
}
然后进入 ServiceConfig#doExport 这里面没有什么特殊逻辑,转到 ServiceConfig#doExportUrls
private void doExportUrls() {
// 获取服务仓库,其实就是一个缓存
ServiceRepository repository = ApplicationModel.getServiceRepository();
// 添加
ServiceDescriptor serviceDescriptor = repository.registerService(getInterfaceClass());
// 缓存 provider
repository.registerProvider(
getUniqueServiceName(),
ref,
serviceDescriptor,
this,
serviceMetadata
);
// 获取配置的注册中心列表
List<URL> registryURLs = ConfigValidationUtils.loadRegistries(this, true);
// 遍历协议
for (ProtocolConfig protocolConfig : protocols) {
String pathKey = URL.buildKey(getContextPath(protocolConfig)
.map(p -> p + "/" + path)
.orElse(path), group, version);
// In case user specified path, register service one more time to map it to path.
repository.registerService(pathKey, interfaceClass);
// TODO, uncomment this line once service key is unified
serviceMetadata.setServiceKey(pathKey);
// 通过注册中心发布服务
doExportUrlsFor1Protocol(protocolConfig, registryURLs);
}
}
进入 ServiceConfig#doExportUrlsFor1Protocol ,这里代码很长,不过我们要是知道他主要做了什么看起来就轻松了,本质上做了以下几件事
- 生成url
- 根据url中配置的协议类型,调用指定协议进行服务的发布
- 启动服务
- 注册服务
private void doExportUrlsFor1Protocol(ProtocolConfig protocolConfig, List<URL> registryURLs) {
String name = protocolConfig.getName(); // 获取协议名称
if (StringUtils.isEmpty(name)) {
name = DUBBO; //默认为dubbo
}
//准备MAP。用域拼接URL
Map<String, String> map = new HashMap<String, String>();
map.put(SIDE_KEY, PROVIDER_SIDE);
ServiceConfig.appendRuntimeParameters(map);
AbstractConfig.appendParameters(map, getMetrics());
AbstractConfig.appendParameters(map, getApplication());
AbstractConfig.appendParameters(map, getModule());
// remove ‘default.‘ prefix for configs from ProviderConfig
// appendParameters(map, provider, Constants.DEFAULT_KEY);
AbstractConfig.appendParameters(map, provider);
AbstractConfig.appendParameters(map, protocolConfig);
AbstractConfig.appendParameters(map, this);
MetadataReportConfig metadataReportConfig = getMetadataReportConfig();
if (metadataReportConfig != null && metadataReportConfig.isValid()) {
map.putIfAbsent(METADATA_KEY, REMOTE_METADATA_STORAGE_TYPE);
}
if (CollectionUtils.isNotEmpty(getMethods())) {
for (MethodConfig method : getMethods()) {
AbstractConfig.appendParameters(map, method, method.getName());
String retryKey = method.getName() + ".retry";
if (map.containsKey(retryKey)) {
String retryValue = map.remove(retryKey);
if ("false".equals(retryValue)) {
map.put(method.getName() + ".retries", "0");
}
}
List<ArgumentConfig> arguments = method.getArguments();
if (CollectionUtils.isNotEmpty(arguments)) {
for (ArgumentConfig argument : arguments) {
// convert argument type
if (argument.getType() != null && argument.getType().length() > 0) {
Method[] methods = interfaceClass.getMethods();
// visit all methods
if (methods.length > 0) {
for (int i = 0; i < methods.length; i++) {
String methodName = methods[i].getName();
// target the method, and get its signature
if (methodName.equals(method.getName())) {
Class<?>[] argtypes = methods[i].getParameterTypes();
// one callback in the method
if (argument.getIndex() != -1) {
if (argtypes[argument.getIndex()].getName().equals(argument.getType())) {
AbstractConfig.appendParameters(map, argument, method.getName() + "." + argument.getIndex());
} else {
throw new IllegalArgumentException("Argument config error : the index attribute and type attribute not match :index :" + argument.getIndex() + ", type:" + argument.getType());
}
} else {
// multiple callbacks in the method
for (int j = 0; j < argtypes.length; j++) {
Class<?> argclazz = argtypes[j];
if (argclazz.getName().equals(argument.getType())) {
AbstractConfig.appendParameters(map, argument, method.getName() + "." + j);
if (argument.getIndex() != -1 && argument.getIndex() != j) {
throw new IllegalArgumentException("Argument config error : the index attribute and type attribute not match :index :" + argument.getIndex() + ", type:" + argument.getType());
}
}
}
}
}
}
}
} else if (argument.getIndex() != -1) {
AbstractConfig.appendParameters(map, argument, method.getName() + "." + argument.getIndex());
} else {
throw new IllegalArgumentException("Argument config must set index or type attribute.eg: <dubbo:argument index=‘0‘ .../> or <dubbo:argument type=xxx .../>");
}
}
}
} // end of methods for
}
// 以上代码都是为了组装 URL
// 是否泛化接口
if (ProtocolUtils.isGeneric(generic)) {
map.put(GENERIC_KEY, generic);
map.put(METHODS_KEY, ANY_VALUE);
} else {
String revision = Version.getVersion(interfaceClass, version);
if (revision != null && revision.length() > 0) {
map.put(REVISION_KEY, revision);
}
String[] methods = Wrapper.getWrapper(interfaceClass).getMethodNames();
if (methods.length == 0) {
logger.warn("No method found in service interface " + interfaceClass.getName());
map.put(METHODS_KEY, ANY_VALUE);
} else {
map.put(METHODS_KEY, StringUtils.join(new HashSet<String>(Arrays.asList(methods)), ","));
}
}
/**
* Here the token value configured by the provider is used to assign the value to ServiceConfig#token
*/
// token 校验
if(ConfigUtils.isEmpty(token) && provider != null) {
token = provider.getToken();
}
if (!ConfigUtils.isEmpty(token)) {
if (ConfigUtils.isDefault(token)) {
map.put(TOKEN_KEY, UUID.randomUUID().toString());
} else {
map.put(TOKEN_KEY, token);
}
}
//init serviceMetadata attachments
serviceMetadata.getAttachments().putAll(map);
// 主机绑定
// export service
String host = findConfigedHosts(protocolConfig, registryURLs, map);
Integer port = findConfigedPorts(protocolConfig, name, map); // 获取端口。默认20880
// 组装URL
URL url = new URL(name, host, port, getContextPath(protocolConfig).map(p -> p + "/" + path).orElse(path), map);
// 获取拓展点
// You can customize Configurator to append extra parameters
if (ExtensionLoader.getExtensionLoader(ConfiguratorFactory.class)
.hasExtension(url.getProtocol())) {
url = ExtensionLoader.getExtensionLoader(ConfiguratorFactory.class)
.getExtension(url.getProtocol()).getConfigurator(url).configure(url);
}
String scope = url.getParameter(SCOPE_KEY);
// don‘t export when none is configured
if (!SCOPE_NONE.equalsIgnoreCase(scope)) {
// 如果scope!=remote, 则先本地暴露服务
// export to local if the config is not remote (export to remote only when config is remote)
if (!SCOPE_REMOTE.equalsIgnoreCase(scope)) {
exportLocal(url);
}
// 如果scope!=remote, 则先本地暴露服务
// export to remote if the config is not local (export to local only when config is local)
if (!SCOPE_LOCAL.equalsIgnoreCase(scope)) {
if (CollectionUtils.isNotEmpty(registryURLs)) {
for (URL registryURL : registryURLs) {
//if protocol is only injvm ,not register
// //如果设置的protocol是injvm,跳过
if (LOCAL_PROTOCOL.equalsIgnoreCase(url.getProtocol())) {
continue;
}
url = url.addParameterIfAbsent(DYNAMIC_KEY, registryURL.getParameter(DYNAMIC_KEY));
URL monitorUrl = ConfigValidationUtils.loadMonitor(this, registryURL);
if (monitorUrl != null) {
url = url.addParameterAndEncoded(MONITOR_KEY, monitorUrl.toFullString());
}
if (logger.isInfoEnabled()) {
if (url.getParameter(REGISTER_KEY, true)) {
logger.info("Register dubbo service " + interfaceClass.getName() + " url " + url + " to registry " + registryURL);
} else {
logger.info("Export dubbo service " + interfaceClass.getName() + " to url " + url);
}
}
// // 是否采用自定义的动态代理机制,默认是javassist
// For providers, this is used to enable custom proxy to generate invoker
String proxy = url.getParameter(PROXY_KEY);
if (StringUtils.isNotEmpty(proxy)) {
registryURL = registryURL.addParameter(PROXY_KEY, proxy);
}
//获得一个自适应扩展点,这个时候返回的Invoker是一个动态代理类。
Invoker<?> invoker = PROXY_FACTORY.getInvoker(ref, (Class) interfaceClass, registryURL.addParameterAndEncoded(EXPORT_KEY, url.toFullString()));
DelegateProviderMetaDataInvoker wrapperInvoker = new DelegateProviderMetaDataInvoker(invoker, this);
Exporter<?> exporter = PROTOCOL.export(wrapperInvoker);
exporters.add(exporter);
}
} else {
if (logger.isInfoEnabled()) {
logger.info("Export dubbo service " + interfaceClass.getName() + " to url " + url);
}
Invoker<?> invoker = PROXY_FACTORY.getInvoker(ref, (Class) interfaceClass, url);
DelegateProviderMetaDataInvoker wrapperInvoker = new DelegateProviderMetaDataInvoker(invoker, this);
Exporter<?> exporter = PROTOCOL.export(wrapperInvoker);
exporters.add(exporter);
}
/**
* @since 2.7.0
* ServiceData Store
*/
WritableMetadataService metadataService = WritableMetadataService.getExtension(url.getParameter(METADATA_KEY, DEFAULT_METADATA_STORAGE_TYPE));
if (metadataService != null) {
metadataService.publishServiceDefinition(url);
}
}
}
this.urls.add(url);
}
对于上述代码中的 getMethods 里面的一阵循环是什么意思呢?请看下面代码:
@DubboService(loadbalance = "random", // 负载均衡
timeout = 50000, //超时
cluster = "failsafe", // 服务容错
protocol = {"dubbo", "rest"}, //多协议支持
registry = {"hangzhou", "wenzhou"}, //多注册中心
methods = {
@Method(name = "sayHello", timeout = -1),
@Method(name = "sayHello", timeout = -1,
arguments = {
@Argument(),
@Argument()
})
}
)
其实本质上就是解析 @DubboService 的注解配置元数据,然后来到了 主机绑定,也就是 IP的查找方法上 ServiceConfig#findConfigedHosts:
private String findConfigedHosts(ProtocolConfig protocolConfig,
List<URL> registryURLs,
Map<String, String> map) {
boolean anyhost = false;
// 查找环境变量中是否存在启动参数 [DUBBO_IP_TO_BIND] =服务注册的ip
String hostToBind = getValueFromConfig(protocolConfig, DUBBO_IP_TO_BIND);
if (hostToBind != null && hostToBind.length() > 0 && isInvalidLocalHost(hostToBind)) {
throw new IllegalArgumentException("Specified invalid bind ip from property:" + DUBBO_IP_TO_BIND + ", value:" + hostToBind);
}
// if bind ip is not found in environment, keep looking up
if (StringUtils.isEmpty(hostToBind)) {
//读取配置文件, dubbo.protocols.dubbo.host= 服务注册的ip
hostToBind = protocolConfig.getHost();
if (provider != null && StringUtils.isEmpty(hostToBind)) {
hostToBind = provider.getHost();
}
if (isInvalidLocalHost(hostToBind)) {
anyhost = true;
try {
logger.info("No valid ip found from environment, try to find valid host from DNS.");
// 获得本机ip地址
hostToBind = InetAddress.getLocalHost().getHostAddress();
} catch (UnknownHostException e) {
logger.warn(e.getMessage(), e);
}
if (isInvalidLocalHost(hostToBind)) {
if (CollectionUtils.isNotEmpty(registryURLs)) {
for (URL registryURL : registryURLs) {
if (MULTICAST.equalsIgnoreCase(registryURL.getParameter("registry"))) {
// skip multicast registry since we cannot connect to it via Socket
continue;
}
try (Socket socket = new Socket()) {
SocketAddress addr = new InetSocketAddress(registryURL.getHost(), registryURL.getPort());
socket.connect(addr, 1000);
//通过Socket去连接注册中心,从而获取本机IP
hostToBind = socket.getLocalAddress().getHostAddress();
break;
} catch (Exception e) {
logger.warn(e.getMessage(), e);
}
}
}
if (isInvalidLocalHost(hostToBind)) {
//会轮询本机的网卡,直到找到合适的IP地址
hostToBind = getLocalHost();
}
}
}
}
map.put(BIND_IP_KEY, hostToBind);
//上面获取到的ip地址是bindip,如果需要作为服务注册中心的ip, DUBBO_IP_TO_REGISTRY -dDUBBO_IP_TO_REGISTRY=ip
// registry ip is not used for bind ip by default
String hostToRegistry = getValueFromConfig(protocolConfig, DUBBO_IP_TO_REGISTRY);
if (hostToRegistry != null && hostToRegistry.length() > 0 && isInvalidLocalHost(hostToRegistry)) {
throw new IllegalArgumentException("Specified invalid registry ip from property:" + DUBBO_IP_TO_REGISTRY + ", value:" + hostToRegistry);
} else if (StringUtils.isEmpty(hostToRegistry)) {
// bind ip is used as registry ip by default
hostToRegistry = hostToBind;
}
map.put(ANYHOST_KEY, String.valueOf(anyhost));
return hostToRegistry;
}
总之就是直到找到一个合法的主机地址为止。然后获取到端口。将map 配置信息集合、IP、Port 传入,构造一个 URL
dubbo://192.168.1.1:20880/com.wuzz.demo.api.HelloService?accepts=0&anyhost=true&application=springboot-dubbo&bind.ip=192.168.1.1
&bind.port=20880&cluster=failsafe&connections=0&deprecated=false&dubbo=2.0.2&dynamic=true&executes=0&generic=false
&interface=com.wuzz.demo.api.HelloService&iothreads=5&methods=sayHello&pid=13496&qos.enable=false&queues=0&release=2.7.7&serialization=kryo&side=provider&threadpool=fixed&threads=201&timeout=50000×tamp=1601354940987
ServiceConfig#doExportUrlsFor1Protocol 还有很多细节的处理,这里有必要解释以下的就是这个 invoker 对象了:
Invoker<?> invoker = PROXY_FACTORY.getInvoker(ref, (Class) interfaceClass, registryURL.addParameterAndEncoded(EXPORT_KEY, url.toFullString()));
DelegateProviderMetaDataInvoker wrapperInvoker = new DelegateProviderMetaDataInvoker(invoker, this);
其中 PROXY_FACTORY 定义如下:
private static final ProxyFactory PROXY_FACTORY = ExtensionLoader.getExtensionLoader(ProxyFactory.class).getAdaptiveExtension();
对应的接口拓展点默认实现为 javassist ,但是会有一个 StubProxyFactoryWrapper 进行包装,但是这里不影响,所以进入 JavassistProxyFactory#getInvoker
@Override
public <T> Invoker<T> getInvoker(T proxy, Class<T> type, URL url) {
// TODO Wrapper cannot handle this scenario correctly: the classname contains ‘$‘
final Wrapper wrapper = Wrapper.getWrapper(proxy.getClass().getName().indexOf(‘$‘) < 0 ? proxy.getClass() : type);
return new AbstractProxyInvoker<T>(proxy, type, url) {
@Override
protected Object doInvoke(T proxy, String methodName,
Class<?>[] parameterTypes,
Object[] arguments) throws Throwable {
return wrapper.invokeMethod(proxy, methodName, parameterTypes, arguments);
}
};
}
通过 javassist 生成一个代理类,这里持有了对应我们需要发布的服务类的所有信息。然后将该类进行传递,一直到本地服务的发布及服务的注册。而后消费端通过这里的 wrapper.invokeMethod 进行调用。
我们可以看一下在我这个环境测试的服务下生成的代理方法的代码,需要进入 Wrapper.getWrapper 方法断点获取:
我们将 c3 拷贝出来:
public Object invokeMethod(Object o, String n, Class[] p, Object[] v) throws java.lang.reflect.InvocationTargetException {
com.wuzz.demo.api.HelloService w;
try {
w = ((com.wuzz.demo.api.HelloService) $1);
} catch (Throwable e) {
throw new IllegalArgumentException(e);
}
try {
if ("sayHello".equals($2) && $3.length == 0) {
return ($w) w.sayHello();
}
} catch (Throwable e) {
throw new java.lang.reflect.InvocationTargetException(e);
}
throw new org.apache.dubbo.common.bytecode.NoSuchMethodException("Not found method \"" + $2 + "\" in class com.wuzz.demo.api.HelloService.");
}
构建好了代理类之后,返回一个AbstractproxyInvoker,并且它实现了doInvoke方法,这个地方似乎看到了dubbo消费者调用过来的时候触发的影子,因为wrapper.invokeMethod本质上就是触发上面动态代理类的方法invokeMethod。
接下来我们来看看服务的远程发布
private static final Protocol PROTOCOL = ExtensionLoader.getExtensionLoader(Protocol.class).getAdaptiveExtension();
Exporter<?> exporter = PROTOCOL.export(wrapperInvoker);
这个 PROTOCOL 的实例化,跟我们上面分析SPI之自适应拓展点一摸一样,所以这里得到的对象是 ProtocolFilterWrapper(QosProtocolWrapper(ProtocolListenerWrapper(DubboProtocol)))。但是需要明白的是,Dubbo 基于URL 驱动,那么这个时候我们需要知道的是URL中携带的协议是什么,这样我们才能够找到对应的拓展点
我们发现这里已经被替换成了 registry 协议,那么此刻应该走到 Protocol$Adaptive 的动态适配器类中,而其中最为关键的代码如下:
String extName = ( url.getProtocol() == null ? "dubbo" : url.getProtocol() );
然后通过这个 extName ,通过获取指定名称的拓展点,找到对应的实现,那么这里的 registry 对应的就是 org.apache.dubbo.registry.integration.RegistryProtocol,但是Protocol 有包装类,那么最后的对象应该是 ProtocolFilterWrapper(QosProtocolWrapper(ProtocolListenerWrapper(RegistryProtocol)))
这里的三个包装类都会判断URL是不是 registry 协议,如果是直接进入下个调用链,当前场景正是 registry 。最终调用 RegistryProtocol#export
public <T> Exporter<T> export(final Invoker<T> originInvoker) throws RpcException {
// 通过URL里面的 registry 属性对应的值获取的注册地址,配置了zookeeper 则这里就是 zookeeper://192.168.1.101:2181/.....
URL registryUrl = getRegistryUrl(originInvoker);
// url to export locally
// 发布的服务地址,当前情况下是dubbo协议 则这里就是
// dubbo://192.168.1.1:20880/.......
URL providerUrl = getProviderUrl(originInvoker);
// Subscribe the override data
// FIXME When the provider subscribes, it will affect the scene : a certain JVM exposes the service and call
// the same service. Because the subscribed is cached key with the name of the service, it causes the
// subscription information to cover.
// 修改URL ,这里设置成 provider://192.168.1.1:20880/.......
final URL overrideSubscribeUrl = getSubscribedOverrideUrl(providerUrl);
final OverrideListener overrideSubscribeListener = new OverrideListener(overrideSubscribeUrl, originInvoker);
overrideListeners.put(overrideSubscribeUrl, overrideSubscribeListener);
// 结合配置相关重写 URL
providerUrl = overrideUrlWithConfig(providerUrl, overrideSubscribeListener);
//export invoker
// 启动 Netty 并且发布本地服务。
final ExporterChangeableWrapper<T> exporter = doLocalExport(originInvoker, providerUrl);
// url to registry
// 获取注册实例,这里如果配置了zookeeper ,则返回 ZookeeperRegistry
final Registry registry = getRegistry(originInvoker);
// dubbo://.....
final URL registeredProviderUrl = getUrlToRegistry(providerUrl, registryUrl);
// decide if we need to delay publish
boolean register = providerUrl.getParameter(REGISTER_KEY, true);
if (register) {
// 注册服务,
register(registryUrl, registeredProviderUrl);
}
// register stated url on provider model
registerStatedUrl(registryUrl, registeredProviderUrl, register);
// Deprecated! Subscribe to override rules in 2.6.x or before.
// //设置注册中心的订阅
registry.subscribe(overrideSubscribeUrl, overrideSubscribeListener);
exporter.setRegisterUrl(registeredProviderUrl);
exporter.setSubscribeUrl(overrideSubscribeUrl);
notifyExport(exporter);
//Ensure that a new exporter instance is returned every time export
// //保证每次export都返回一个新的exporter实例
return new DestroyableExporter<>(exporter);
}
然后走服务的发布 RegistryProtocol#doLocalExport
private <T> ExporterChangeableWrapper<T> doLocalExport(final Invoker<T> originInvoker, URL providerUrl) {
String key = getCacheKey(originInvoker);
return (ExporterChangeableWrapper<T>) bounds.computeIfAbsent(key, s -> {
Invoker<?> invokerDelegate = new InvokerDelegate<>(originInvoker, providerUrl);
return new ExporterChangeableWrapper<>((Exporter<T>) protocol.export(invokerDelegate), originInvoker);
});
}
其中 providerUrl 是dubbo:// 协议开头的地址URL,正如之前所说,Dubbo基于URL驱动,那么此刻 protocol 是 Protocol$Adaptive,所以此刻 protocol.export(invokerDelegate) 会走 DubboProtocol#export ,需要注意的是,这里会进行包装 ProtocolFilterWrapper(QosProtocolWrapper(ProtocolListenerWrapper(DubboProtocol)))
我们直接进入 DubboProtocol#export
public <T> Exporter<T> export(Invoker<T> invoker) throws RpcException { URL url = invoker.getUrl(); // export service. String key = serviceKey(url); DubboExporter<T> exporter = new DubboExporter<T>(invoker, key, exporterMap); exporterMap.put(key, exporter); //export an stub service for dispatching event Boolean isStubSupportEvent = url.getParameter(STUB_EVENT_KEY, DEFAULT_STUB_EVENT); //是否是本地存根事件 Boolean isCallbackservice = url.getParameter(IS_CALLBACK_SERVICE, false); //是否配置了参数回调机制 if (isStubSupportEvent && !isCallbackservice) { String stubServiceMethods = url.getParameter(STUB_EVENT_METHODS_KEY); if (stubServiceMethods == null || stubServiceMethods.length() == 0) { if (logger.isWarnEnabled()) { logger.warn(new IllegalStateException("consumer [" + url.getParameter(INTERFACE_KEY) + "], has set stubproxy support event ,but no stub methods founded.")); } } } openServer(url); optimizeSerialization(url); return exporter; }
openServer: 往下看这个过程,进入到openServer(),从名字来看它是用来开启一个服务。去开启一个服务,并且放入到缓存中(在同一台机器上(单网卡),同一个端口上仅允许启动一个服务器实例)
private void openServer(URL url) {
// 获取 host:port,并将其作为服务器实例的 key,用于标识当前的服务器实例
String key = url.getAddress();
////client 也可以暴露一个只有server可以调用的服务
boolean isServer = url.getParameter(Constants.IS_SERVER_KEY, true);
if (isServer) {
//是否在serverMap中缓存了
ExchangeServer server = serverMap.get(key);
if (server == null) {
synchronized (this) {
server = serverMap.get(key);
if (server == null) {
// 创建服务器实例
serverMap.put(key, createServer(url));
}
}
} else {
// 服务器已创建,则根据 url 中的配置重置服务器
server.reset(url);
}
}
}
创建服务:createServer
private ProtocolServer createServer(URL url) {
//组装url,在url中添加心跳时间、编解码参数
url = URLBuilder.from(url)
// 当服务关闭以后,发送一个只读的事件,默认是开启状态
.addParameterIfAbsent(Constants.CHANNEL_READONLYEVENT_SENT_KEY,
Boolean.TRUE.toString())
// 启动心跳配置
.addParameterIfAbsent(Constants.HEARTBEAT_KEY,
String.valueOf(Constants.DEFAULT_HEARTBEAT))
.addParameter(Constants.CODEC_KEY, DubboCodec.NAME)
.build();
String str = url.getParameter(SERVER_KEY, DEFAULT_REMOTING_SERVER);
//通过 SPI 检测是否存在 server 参数所代表的 Transporter 拓展,不存在则抛出异常
if (str != null && str.length() > 0 &&
!ExtensionLoader.getExtensionLoader(Transporter.class).hasExtension(str)) {
throw new RpcException("Unsupported server type: " + str + ", url: " +
url);
}
//创建ExchangeServer.
ExchangeServer server;
try {
server = Exchangers.bind(url, requestHandler);
} catch (RemotingException e) {
throw new RpcException("Fail to start server(url: " + url + ") " +
e.getMessage(), e);
}
str = url.getParameter(CLIENT_KEY);
if (str != null && str.length() > 0) {
Set<String> supportedTypes =
ExtensionLoader.getExtensionLoader(Transporter.class).getSupportedExtensions();
if (!supportedTypes.contains(str)) {
throw new RpcException("Unsupported client type: " + str);
}
}
return new DubboProtocolServer(server);
}
Exchangers.bind :
public static ExchangeServer bind(URL url, ExchangeHandler handler) throws
RemotingException {
if (url == null) {
throw new IllegalArgumentException("url == null");
}
if (handler == null) {
throw new IllegalArgumentException("handler == null");
}
//获取 Exchanger,默认为 HeaderExchanger。
//调用 HeaderExchanger 的 bind 方法创建 ExchangeServer 实例
url = url.addParameterIfAbsent(Constants.CODEC_KEY, "exchange");
return getExchanger(url).bind(url, handler);
}
public static Exchanger getExchanger(URL url) {
String type = url.getParameter(Constants.EXCHANGER_KEY, Constants.DEFAULT_EXCHANGER);
return getExchanger(type);
}
// 拓展点,默认为 header
public static Exchanger getExchanger(String type) {
return ExtensionLoader.getExtensionLoader(Exchanger.class).getExtension(type);
}
然后根据拓展点进入 HeaderExchanger#bind
- new DecodeHandler(new HeaderExchangeHandler(handler))
- Transporters.bind :发布服务
- new HeaderExchangeServer:服务端消费的调用链
目前我们只需要关心transporters.bind方法即可
@Override
public ExchangeServer bind(URL url, ExchangeHandler handler) throws RemotingException {
return new HeaderExchangeServer(Transporters.bind(url, new DecodeHandler(new HeaderExchangeHandler(handler))));
}
进入 Transporters#bind 发布远程服务
public static RemotingServer bind(URL url, ChannelHandler... handlers) throws RemotingException {
if (url == null) {
throw new IllegalArgumentException("url == null");
}
if (handlers == null || handlers.length == 0) {
throw new IllegalArgumentException("handlers == null");
}
ChannelHandler handler;
if (handlers.length == 1) {
handler = handlers[0];
} else {
handler = new ChannelHandlerDispatcher(handlers);
}
return getTransporter().bind(url, handler);
}
// @SPI("netty") 默认为最新的 netty4 实现
public static Transporter getTransporter() {
return ExtensionLoader.getExtensionLoader(Transporter.class).getAdaptiveExtension();
}
走到是最新的netty4版本的 netty进行服务发布:
进入到 org.apache.dubbo.remoting.transport.netty4.NettyTransporter#bind
@Override
public RemotingServer bind(URL url, ChannelHandler handler) throws RemotingException {
return new NettyServer(url, handler);
}
然后创建了一个 NettyServer 实例, 里面有个 doOpen 方法用域开启服务。接下去就是启动Netty服务了。想进一步了解Netty 机制的小伙伴可以参考:https://www.cnblogs.com/wuzhenzhao/category/1528244.html
服务注册源码分析:
服务在本地发布完成,那么接下去要进入服务的注册阶段,相关代码在 org.apache.dubbo.registry.integration.RegistryProtocol#export 类中:
// url to registry
final Registry registry = getRegistry(originInvoker);
final URL registeredProviderUrl = getUrlToRegistry(providerUrl, registryUrl);
// decide if we need to delay publish
boolean register = providerUrl.getParameter(REGISTER_KEY, true);
if (register) {
register(registryUrl, registeredProviderUrl);
}
其中 getRegistry 主要是获取到一个注册器的实现,代码如下:
protected Registry getRegistry(final Invoker<?> originInvoker) {
// 这个时候 Url为 zookeeper://开头
URL registryUrl = getRegistryUrl(originInvoker);
// 所以这里 RegistryFactory$Adapter 获取到的应该为 zookeeper的实现
return registryFactory.getRegistry(registryUrl);
}
然后这里应该进入 ZookeeperRegistryFactory#getRegistry ,但是 RegistryFactory 拓展点存在包装类 RegistryFactoryWrapper ,所以这里先走 RegistryFactoryWrapper#getRegistry ,然后走 ZookeeperRegistryFactory#getRegistry 。由于本类未实现,则进入父类 AbstractRegistryFactory#getRegistry ,然后调用 ZookeeperRegistryFactory#createRegistry,返回一个 ListenerRegistryWrapper(ZookeeperRegistry)
然后进入服务注册 RegistryProtocol#register
private void register(URL registryUrl, URL registeredProviderUrl) {
//zookeeper://192.168.1.101:2181/........
Registry registry = registryFactory.getRegistry(registryUrl);
registry.register(registeredProviderUrl);
}
这里跟上面一样的逻辑,然后一定要走 ZookeeperRegistry#register ,但是本类中也未实现 ,走父类 FailbackRegistry#register
public void register(URL url) {
if (!acceptable(url)) {
logger.info("URL " + url + " will not be registered to Registry. Registry " + url + " does not accept service of this protocol type.");
return;
}
// 调用父类注册,缓存添加
super.register(url);
removeFailedRegistered(url);
removeFailedUnregistered(url);
try {
// Sending a registration request to the server side
// 注册
doRegister(url);
} catch (Exception e) {
Throwable t = e;
// If the startup detection is opened, the Exception is thrown directly.
boolean check = getUrl().getParameter(Constants.CHECK_KEY, true)
&& url.getParameter(Constants.CHECK_KEY, true)
&& !CONSUMER_PROTOCOL.equals(url.getProtocol());
boolean skipFailback = t instanceof SkipFailbackWrapperException;
// 是否启动检查
if (check || skipFailback) {
if (skipFailback) {
t = t.getCause();
}
throw new IllegalStateException("Failed to register " + url + " to registry " + getUrl().getAddress() + ", cause: " + t.getMessage(), t);
} else {
logger.error("Failed to register " + url + ", waiting for retry, cause: " + t.getMessage(), t);
}
// 失败重试
// Record a failed registration request to a failed list, retry regularly
addFailedRegistered(url);
}
}
然后进入 ZookeeperRegistry#doRegister
@Override
public void doRegister(URL url) {
try {
zkClient.create(toUrlPath(url), url.getParameter(DYNAMIC_KEY, true));
} catch (Throwable e) {
throw new RpcException("Failed to register " + url + " to zookeeper " + getUrl() + ", cause: " + e.getMessage(), e);
}
}
有经验的开发人员看到这个就不用解释了。服务到此注册完毕,ZK 服务端即出现服务注册相关的信息。最后附上服务发布、注册的主要流程图