【题目描述】
形如2P-1的素数称为麦森数,这时P一定也是个素数。但反过来不一定,即如果P是个素数,2P-1不一定也是素数。到1998年底,人们已找到了37个麦森数。最大的一个是P=3021377,它有909526位。麦森数有许多重要应用,它与完全数密切相关。
任务:输入P(1000<P<3100000),计算2P-1的位数和最后500位数字(用十进制高精度数表示)
【输入】
只包含一个整数P(1000<P<3100000)
【输出】
第一行:十进制高精度数2P-1的位数。
第2-11行:十进制高精度数2P-1的最后500位数字。(每行输出50位,共输出10行,不足500位时高位补0)
不必验证2P-1与P是否为素数。
【输入样例】
1279
【输出样例】
386
00000000000000000000000000000000000000000000000000 00000000000000000000000000000000000000000000000000 00000000000000104079321946643990819252403273640855 38615262247266704805319112350403608059673360298012 23944173232418484242161395428100779138356624832346 49081399066056773207629241295093892203457731833496 61583550472959420547689811211693677147548478866962 50138443826029173234888531116082853841658502825560 46662248318909188018470682222031405210266984354887 32958028878050869736186900714720710555703168729087
这道题的难点主要是在于高精+快速幂把代码搞复杂了
然而思想并不难的_(:з」∠)_
首先是求位数: 与 有着相同的位数。
因为2的次方满足了最后一位不为零的要求,所以减一后位数并不会改变,那么我们可以直接求 的位数。那么怎么求位数呢?不妨设 ,根据 的位数为 ,我们只要想办法把 中的底数2改为10,指数加一就是位数了。由此想到用10的几次方来代替2,那么就不难想到 ,这样便可以把 中的2代换掉,变为 。根据乘方的原理,将p乘进去,原式便可化为我们最终想要的形式 了,所以位数就是 。(提醒一下,C++中cmath库自带log10()函数...)
然后就是快速幂,关于快速幂可以参考下面这篇文章☟☟☟
快速幂 - endl\n - 博客园 https://www.cnblogs.com/ljy-endl/p/11307890.html
#include<cstdio>
#include<cmath>
#include<cstring>
using namespace std;
int f[],p,res[],sav[];//乘法要开两倍长度
void result_1()
{
memset(sav,,sizeof(sav));
for(register int i=;i<=;i+=)
for(register int j=;j<=;j+=)
sav[i+j-]+=res[i]*f[j];//先计算每一位上的值(不进位)
for(register int i=;i<=;i+=)
{
sav[i+]+=sav[i]/;//单独处理进位问题,不容易出错
sav[i]%=;
}
memcpy(res,sav,sizeof(res));//cstring库里的赋值函数,把sav的值赋给res
}
void result_2()//只是在result_1的基础上进行了细微的修改
{
memset(sav,,sizeof(sav));
for(register int i=;i<=;i+=)
for(register int j=;j<=;j+=)
sav[i+j-]+=f[i]*f[j];
for(register int i=;i<=;i+=)
{
sav[i+]+=sav[i]/;
sav[i]%=;
}
memcpy(f,sav,sizeof(f));
}
int main()
{
scanf("%d",&p);
printf("%d\n",(int)(log10()*p+));
res[]=;
f[]=;//高精度赋初值
while(p!=)//快速幂模板
{
if(p%==)result_1();
p/=;
result_2();
}
res[]-=;
for(register int i=;i>=;i-=)//注意输出格式,50个换一行,第一个不用
if(i!=&&i%==)printf("\n%d",res[i]);
else printf("%d",res[i]);
return ;
}
//代码来自:题解 P1045 【麦森数】 - ForwardFuture's blog - 洛谷博客 https://www.luogu.org/blog/28916/solution-p1045