-
题意:有两个长度为\(n\)的序列\(a\)和\(b\),定义\(C_k=max(A_i,B_j)\ (i\ and\ j\ge k)\),求\(\sum^{n-1}_{i=0}C_i\).
-
题解:暴力思路:求出所有的\(C_k\),然后从\(n-1\)倒着维护最大值贡献给答案即可.
根据到这维护最大值这个思想,我们考虑\(i\)&\(j\)=\(i\)的情况,根据&运算的性质,两个数&之后只会不变或者变小,我们倒着枚举\(i\),根据上述性质,我们找\([i,n-1]\)中满足条件的\(j\),这里我们只要看单独的某一个\(1\)即可,可以用dp转移过来,那么我们每次可以得到\([i,n-1]\)中的满足条件的\(j\),更新最大值最小值.最后在求答案贡献的时候,\(A[i]\)表示的是\([i,n-1]\)中的\(i\)&\(j\)=\(i\)的某个位置\(x_1\)的值,同理,\(B[i]\)表示的是某个位置\(x_2\)的值,因为我们在更新的时候保证\(i\)&\(j\)=\(i\),且根据性质\(j\)一定不小于\(i\),那么\(x_1\)&\(x_2\ge i\),然后就根据我们前面的暴力思路求贡献给答案就好了.
-
代码:
#include <iostream> #include <iomanip> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <stack> #include <queue> #include <vector> #include <map> #include <set> #include <unordered_set> #include <unordered_map> #define ll long long #define db double #define fi first #define se second #define pb push_back #define me memset #define rep(a,b,c) for(int a=b;a<=c;++a) #define per(a,b,c) for(int a=b;a>=c;--a) const int N = 1e6 + 10; const int mod = 998244353; const int INF = 0x3f3f3f3f; using namespace std; typedef pair<int,int> PII; typedef pair<ll,ll> PLL; int gcd(int a,int b){return b?gcd(b,a%b):a;} int lcm(int a,int b){return a/gcd(a,b)*b;} ll a[N],A[N],b[N],B[N]; int main() { ios::sync_with_stdio(false);cin.tie(0);cout.tie(0); #ifdef lr001 freopen("/Users/somnus/Desktop/data/in.txt","r",stdin); #endif #ifdef lr002 freopen("/Users/somnus/Desktop/data/out.txt","w",stdout); #endif int _; cin>>_; while(_--){ int n; cin>>n; rep(i,0,n-1) cin>>a[i],A[i]=a[i]; rep(i,0,n-1) cin>>b[i],B[i]=b[i]; int base=0; while((1<<base)<=n) base++; //要包括n /* brute_force rep(i,0,n-1){ rep(j,0,n-1){ res[i&j]=max(res[i&j],a[i]*b[j]); } } int ans=0; per(i,n-1,0){ res[i]=max(res[i],res[i+1]); ans+=res[i]; } cout<<ans<<'\n'; */ rep(i,n,(1<<base)-1){ A[i]=B[i]=-INF; a[i]=b[i]=INF; } per(i,n,0){ rep(j,0,base-1){ int cur=1<<j; if((i&cur)==0){ A[i]=max(A[i],A[i^cur]); B[i]=max(B[i],B[i^cur]); a[i]=min(a[i],a[i^cur]); b[i]=min(b[i],b[i^cur]); } } } ll mx=-1e18; ll ans=0; per(i,n-1,0){ ll res=-1e18; res=max(res,A[i]*B[i]); res=max(res,A[i]*b[i]); res=max(res,a[i]*B[i]); res=max(res,a[i]*b[i]); res=max(res,mx); mx=res; ans=(ans+res+mod)%mod; } cout<<ans<<'\n'; } return 0; }