MapTask类继承于Task类,它最主要的方法就是run(),用来执行这个Map任务。
run()首先设置一个TaskReporter并启动,然后调用JobConf的getUseNewAPI()判断是否使用New API,使用New API的设置在前面[Hadoop源码解读](三)MapReduce篇之Job类 讲到过,再调用Task继承来的initialize()方法初始化这个task,接着根据需要执行runJobCleanupTask()、runJobSetupTask()、runTaskCleanupTask()或相应的Mapper,执行Mapper时根据情况使用不同版本的MapReduce,这个版本是设置参数决定的。
@Override public void run(final JobConf job, final TaskUmbilicalProtocol umbilical) throws IOException, ClassNotFoundException, InterruptedException { this.umbilical = umbilical; // start thread that will handle communication with parent TaskReporter reporter = new TaskReporter(getProgress(), umbilical, jvmContext); reporter.startCommunicationThread(); boolean useNewApi = job.getUseNewMapper(); //是由JobConf来的,而New API 的JobContext包含一个JobConf,Job类有 //setUseNewAPI()方法,当Job.submit()时使用它,这样,waitForCompletion()就用submit()设置了使用New API,而此时就使用它。 initialize(job, getJobID(), reporter, useNewApi);//一个Task的初始化工作,包括jobContext,taskContext,输出路径等, //使用的是Task.initialize()方法 // check if it is a cleanupJobTask if (jobCleanup) { runJobCleanupTask(umbilical, reporter); return; } if (jobSetup) { runJobSetupTask(umbilical, reporter); return; } if (taskCleanup) { runTaskCleanupTask(umbilical, reporter); return; } if (useNewApi) {//根据情况使用不同的MapReduce版本执行Mapper runNewMapper(job, splitMetaInfo, umbilical, reporter); } else { runOldMapper(job, splitMetaInfo, umbilical, reporter); } done(umbilical, reporter); }
runNewMapper对应new API的MapReduce,而runOldMapper对应旧API。
runNewMapper首先创建TaskAttemptContext对象,Mapper对象,InputFormat对象,InputSplit,RecordReader;然后根据是否有Reduce task来创建不同的输出收集器NewDirectOutputCollector[没有reducer]或NewOutputCollector[有reducer],接下来调用input.initialize()初始化RecordReader,主要是为输入做准备,设置RecordReader,输入路径等等。然后到最主要的部分:mapper.run()。这个方法就是调用前面[Hadoop源码解读](二)MapReduce篇之Mapper类讲到的Mapper.class的run()方法。然后就是一条一条的读取K/V对,这样就衔接起来了。
@SuppressWarnings("unchecked") private <INKEY,INVALUE,OUTKEY,OUTVALUE> void runNewMapper(final JobConf job, final TaskSplitIndex splitIndex, final TaskUmbilicalProtocol umbilical, TaskReporter reporter ) throws IOException, ClassNotFoundException, InterruptedException { // make a task context so we can get the classes org.apache.hadoop.mapreduce.TaskAttemptContext taskContext = new org.apache.hadoop.mapreduce.TaskAttemptContext(job, getTaskID()); // make a mapper org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper = (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>) ReflectionUtils.newInstance(taskContext.getMapperClass(), job); // make the input format org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat = (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>) ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job); // rebuild the input split org.apache.hadoop.mapreduce.InputSplit split = null; split = getSplitDetails(new Path(splitIndex.getSplitLocation()), splitIndex.getStartOffset()); org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input = new NewTrackingRecordReader<INKEY,INVALUE> (split, inputFormat, reporter, job, taskContext); job.setBoolean("mapred.skip.on", isSkipping()); org.apache.hadoop.mapreduce.RecordWriter output = null; org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context mapperContext = null; try { Constructor<org.apache.hadoop.mapreduce.Mapper.Context> contextConstructor = org.apache.hadoop.mapreduce.Mapper.Context.class.getConstructor (new Class[]{org.apache.hadoop.mapreduce.Mapper.class, Configuration.class, org.apache.hadoop.mapreduce.TaskAttemptID.class, org.apache.hadoop.mapreduce.RecordReader.class, org.apache.hadoop.mapreduce.RecordWriter.class, org.apache.hadoop.mapreduce.OutputCommitter.class, // org.apache.hadoop.mapreduce.StatusReporter.class, org.apache.hadoop.mapreduce.InputSplit.class}); // get an output object if (job.getNumReduceTasks() == 0) { output = new NewDirectOutputCollector(taskContext, job, umbilical, reporter); } else { output = new NewOutputCollector(taskContext, job, umbilical, reporter); } mapperContext = contextConstructor.newInstance(mapper, job, getTaskID(), input, output, committer, reporter, split); input.initialize(split, mapperContext); mapper.run(mapperContext); input.close(); output.close(mapperContext); } catch (NoSuchMethodException e) { throw new IOException("Can't find Context constructor", e); } catch (InstantiationException e) { throw new IOException("Can't create Context", e); } catch (InvocationTargetException e) { throw new IOException("Can't invoke Context constructor", e); } catch (IllegalAccessException e) { throw new IOException("Can't invoke Context constructor", e); } }
至于运行哪个Mapper类,一般是我们用job.setMapperClass(SelectGradeMapper.class)设置的,那设置后是怎样获取的,或者默认值是什么,且看下面的追溯。
MapTask.runNewMapper()
=> (TaskAttemptContext)taskContext.getMapperClass(); //runNewMapper生成mapper时用到。
=> JobContext.getMapperClass()
=> JobConf.getClass(MAP_CLASS_ATTR,Mapper.class)
=> Configuration.getClass(name,default)
根据上面一层的调用关系,找到了默认值是Mapper.class,它的获取过程也一目了然。
再仔细看看Configuration.getClass()
public Class<?> getClass(String name, Class<?> defaultValue) { String valueString = get(name); if (valueString == null) return defaultValue; try { return getClassByName(valueString); } catch (ClassNotFoundException e) { throw new RuntimeException(e); } }
它首先看是否设置了某个属性,如果设置了,就调用getClassByName获取这个属性对应的类[加载之],否则就返回默认值。
Mapper执行完后,关闭RecordReader和OutputCollector等资源就完事了。
另外我们把关注点放在上面的runNewMapper()中的mapper.run(mapperContext);前面对Mapper.class提到,这个mapperContext会被用于读取输入分片的K/V对和写出输出结果的K/V对。而由
mapperContext = contextConstructor.newInstance(mapper, job, getTaskID(), input, output, committer, reporter, split);
可以看出,这个Context是由我们设置的mapper,RecordReader等进行配置的。
Mapper中的map方法不断使用context.write(K,V)进行输出,我们看这个函数是怎么进行的,先看Context类的层次关系:
write()方法是由TaskInputOutputContext来的:
public void write(KEYOUT key, VALUEOUT value ) throws IOException, InterruptedException { output.write(key, value); }
它调用了RecordWriter.write(),RecordWriter是一个抽象类,主要是规定了write方法。
public abstract class RecordWriter<K, V> { public abstract void write(K key, V value ) throws IOException, InterruptedException; public abstract void close(TaskAttemptContext context ) throws IOException, InterruptedException; }
然后看RecordWriter的一个实现NewOutputCollector,它是MapTask的内部类:
private class NewOutputCollector<K,V> extends org.apache.hadoop.mapreduce.RecordWriter<K,V> { private final MapOutputCollector<K,V> collector; private final org.apache.hadoop.mapreduce.Partitioner<K,V> partitioner; private final int partitions; @SuppressWarnings("unchecked") NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext, JobConf job, TaskUmbilicalProtocol umbilical, TaskReporter reporter ) throws IOException, ClassNotFoundException { collector = new MapOutputBuffer<K,V>(umbilical, job, reporter); partitions = jobContext.getNumReduceTasks(); if (partitions > 0) { partitioner = (org.apache.hadoop.mapreduce.Partitioner<K,V>) ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job); } else { partitioner = new org.apache.hadoop.mapreduce.Partitioner<K,V>() { @Override public int getPartition(K key, V value, int numPartitions) { return -1; } }; } } @Override public void write(K key, V value) throws IOException, InterruptedException { collector.collect(key, value, partitioner.getPartition(key, value, partitions)); } @Override public void close(TaskAttemptContext context ) throws IOException,InterruptedException { try { collector.flush(); } catch (ClassNotFoundException cnf) { throw new IOException("can't find class ", cnf); } collector.close(); } }
从它的write()方法,我们从context.write(K,V)追溯到了collector.collect(K,V,partition),注意到输出需要一个Partitioner的getPartitioner()来提供当前K/V对的所属分区,因为要对K/V对分区,不同分区输出到不同Reducer,Partitioner默认是HashPartitioner,可设置,Reduce task数量决定Partition数量;
我们可以从NewOutputCollector看出NewOutputCollector就是MapOutputBuffer的封装。MapoutputBuffer是旧API中就存在了的,它很复杂,但很关键,暂且放着先,反正就是收集输出K/V对的。它实现了MapperOutputCollector接口:
interface MapOutputCollector<K, V> { public void collect(K key, V value, int partition ) throws IOException, InterruptedException; public void close() throws IOException, InterruptedException; public void flush() throws IOException, InterruptedException, ClassNotFoundException; }
这个接口告诉我们,收集器必须实现collect,close,flush方法。
看一个简单的:NewDirectOutputCollector,它在没有reduce task的时候使用,主要是从InputFormat中获取OutputFormat的RecordWriter,然后就可以用这个RecordWriter的write()方法来写出,这就与我们设置的输出格式对应起来了。
private class NewDirectOutputCollector<K,V> extends org.apache.hadoop.mapreduce.RecordWriter<K,V> { private final org.apache.hadoop.mapreduce.RecordWriter out; private final TaskReporter reporter; private final Counters.Counter mapOutputRecordCounter; private final Counters.Counter fileOutputByteCounter; private final Statistics fsStats; @SuppressWarnings("unchecked") NewDirectOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext, JobConf job, TaskUmbilicalProtocol umbilical, TaskReporter reporter) throws IOException, ClassNotFoundException, InterruptedException { this.reporter = reporter; Statistics matchedStats = null; if (outputFormat instanceof org.apache.hadoop.mapreduce.lib.output.FileOutputFormat) { //outputFormat是Task来的,内部类访问外部类成员变量 matchedStats = getFsStatistics(org.apache.hadoop.mapreduce.lib.output.FileOutputFormat .getOutputPath(jobContext), job); } fsStats = matchedStats; mapOutputRecordCounter = reporter.getCounter(MAP_OUTPUT_RECORDS); fileOutputByteCounter = reporter .getCounter(org.apache.hadoop.mapreduce.lib.output.FileOutputFormat.Counter.BYTES_WRITTEN); long bytesOutPrev = getOutputBytes(fsStats); out = outputFormat.getRecordWriter(taskContext); //主要是这句,获取设置的OutputputFormat里的RecordWriter long bytesOutCurr = getOutputBytes(fsStats); fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev); } @Override @SuppressWarnings("unchecked") public void write(K key, V value) throws IOException, InterruptedException { reporter.progress(); //报告一下进度 long bytesOutPrev = getOutputBytes(fsStats); out.write(key, value);//使用out收集一条记录,out是设置的OutputFormat来的。 long bytesOutCurr = getOutputBytes(fsStats); fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev); //更新输出字节数 mapOutputRecordCounter.increment(1); //更新输出K/V对数量 } @Override public void close(TaskAttemptContext context) throws IOException,InterruptedException { reporter.progress(); if (out != null) { long bytesOutPrev = getOutputBytes(fsStats); out.close(context); long bytesOutCurr = getOutputBytes(fsStats); fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev); } } private long getOutputBytes(Statistics stats) { return stats == null ? 0 : stats.getBytesWritten(); } }
另外还有一些以runOldMapper()为主导的旧MapReduce API那套,就不进行讨论了。