AcWing 796.子矩阵的和
题目描述
输入一个n行m列的整数矩阵,再输入q个询问,每个询问包含四个整数x1, y1, x2, y2,表示一个子矩阵的左上角坐标和右下角坐标。
对于每个询问输出子矩阵中所有数的和。
输入格式
第一行包含三个整数n,m,q。
接下来n行,每行包含m个整数,表示整数矩阵。
接下来q行,每行包含四个整数x1, y1, x2, y2,表示一组询问。
输出格式
共q行,每行输出一个询问的结果。
数据范围
1≤n,m≤1000,
1≤q≤200000,
1≤x1≤x2≤n,
1≤y1≤y2≤m,
?1000≤矩阵内元素的值≤1000
输入样例
3 4 3
1 7 2 4
3 6 2 8
2 1 2 3
1 1 2 2
2 1 3 4
1 3 3 4
输出样例
17
27
21
题目思路
用前缀和的思想,s数组存储a数组的对应角标值的和;
存储公式:s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j]
计算公式:s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1]
#include<iostream>
using namespace std;
const int N = 1e3+10;
int a[N][N],s[N][N];
int main()
{
int n,m,q;
scanf("%d%d%d",&n,&m,&q);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
s[i][j] = s[i-1][j] + s[i][j-1] - s[i-1][j-1] + a[i][j];
int x1,y1,x2,y2;
while(q--)
{
scanf("%d%d%d%d",&x1,&y1,&x2,&y2);
printf("%d\n",s[x2][y2]-s[x1-1][y2]-s[x2][y1-1]+s[x1-1][y1-1]);
}
return 0;
}