用Python数据分析选购手机,双十一刚过你选对了嘛

前言

文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。

作者: shenzhongqiang

PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取

http://note.youdao.com/noteshare?id=3054cce4add8a909e784ad934f956cef

分析思路

思路很简单,上京东商城把所有手机的数据爬下来,然后根据配置、价格过滤出符合条件的手机,在过滤出来的手机里选择一部性价比最高的。画成流程图,大致是这样的

用Python数据分析选购手机,双十一刚过你选对了嘛

爬取数据

第一步,我们先从京东商城爬取所有在售的手机数据。这里我们关心的主要是价格和配置信息,商品页面上的价格和配置信息像下面两张图所示 用Python数据分析选购手机,双十一刚过你选对了嘛 用Python数据分析选购手机,双十一刚过你选对了嘛

我们编写代码爬取所有手机的价格和配置信息,爬虫的核心代码如下

 1 # 获取手机单品的价格
 2 def get_price(skuid):
 3     url = "https://c0.3.cn/stock?skuId=" + str(skuid) + "&area=1_72_4137_0&venderId=1000004123&cat=9987,653,655&buyNum=1&choseSuitSkuIds=&extraParam={%22originid%22:%221%22}&ch=1&fqsp=0&pduid=15379228074621272760279&pdpin=&detailedAdd=null&callback=jQuery3285040"
 4     r = requests.get(url, verify=False)
 5     content = r.content.decode(GBK)
 6     matched = re.search(rjQuery\d+\((.*)\), content, re.M)
 7     if matched:
 8         data = json.loads(matched.group(1))
 9         price = float(data["stock"]["jdPrice"]["p"])
10         return price
11     return 0
12 ?
13 # 获取手机的配置信息
14 def get_item(skuid, url):
15     price = get_price(skuid)
16     r = requests.get(url, verify=False)
17     content = r.content
18     root = etree.HTML(content)
19     nodes = root.xpath(.//div[@class="Ptable"]/div[@class="Ptable-item"])
20     params = {"price": price, "skuid": skuid}
21     for node in nodes:
22         text_nodes = node.xpath(./dl)[0]
23         k = ""
24         v = ""
25         for text_node in text_nodes:
26             if text_node.tag == "dt":
27                 k = text_node.text
28             elif text_node.tag == "dd" and "class" not in text_node.attrib:
29                 v = text_node.text
30                 params[k] = v
31     return params
32 ?
33 # 获取一个页面中的所有手机信息
34 def get_cellphone(page):
35     url = "https://list.jd.com/list.html?cat=9987,653,655&page={}&sort=sort_rank_asc&trans=1&JL=6_0_0&ms=4#J_main".format(page)
36     r = requests.get(url, verify=False)
37     content = r.content.decode("utf-8")
38     root = etree.HTML(content)
39     cell_nodes = root.xpath(.//div[@class="p-img"]/a)
40     client = pymongo.MongoClient()
41     db = client[DB]
42     for node in cell_nodes:
43         item_url = fix_url(node.attrib["href"])
44         matched = re.search(item.jd.com/(\d+)\.html, item_url)
45         skuid = int(matched.group(1))
46         saved = db.items.find({"skuid": skuid}).count()
47         if saved > 0:
48             print(saved)
49             continue
50         item = get_item(skuid, item_url)
51         # 结果存入MongoDB
52         db.items.insert(item)

 

需要注意的是,上面的get_price和get_item函数分别从两个url获取数据,这是因为配置信息可以直接从商品页面中解析得到,而价格信息需要从另外一个ajax请求里获得。爬下来的所有数据存入MongoDB。

过滤数据

爬下来的手机数据当中,信息完整的共有4700多条数据,这4700多部手机属于70个手机品牌。 这些品牌画成词云图是这样的

用Python数据分析选购手机,双十一刚过你选对了嘛

手机的配置主要有以下这些参数

  • 是否双卡双待

  • 机身材质

  • CPU型号

  • 内存大小

  • 存储容量

  • 电池容量

  • 屏幕材质

  • 屏幕大小

  • 分辨率

  • 摄像头

平时用手机主要是看看书、刷刷知乎微信、买买东西,所以选购新手机的时候最关心的就是速度、容量、待机时间这几项,对摄像头、屏幕材质倒不是特别在乎。考虑以上因素,在对数据做过滤的时候,我设定了以下几个条件

  • CPU的品牌是高通

  • 内存大小大于等于6GB

  • 存储容量大于等于64GB

  • 电池容量大于3000mAh

  • 必须是双卡双待

  • 价格在1500元以内

过滤数据的代码如下

1 client = pymongo.MongoClient()
2 db = client[DB]
3 items = db.items.find({})
4 result = preprocess(items)
5 df = pd.DataFrame(result)
6 df_res = df[df.cpu_brand=="骁龙(Snapdragon)"][df.battery_cap >= 3000][df.rom >= 64][df.ram >= 6][df.dual_sim == True][df.price<=1500]
7 print(df_res[["brand", "model", "color", "cpu_brand", "cpu_freq", "cpu_core", "cpu_model", "rom", "ram", "battery_cap", "price"]].sort_values(by="price"))

 

首先从MongoDB里读取数据,然后创建DataFrame,对DataFrame里的数据按照上面的条件作选择。代码的最后一行将筛选出来的手机打印出来,并按价格从低到高排序。

经过了这样一轮筛选后,我们得到了下面的38款手机

用Python数据分析选购手机,双十一刚过你选对了嘛

上面的几部手机配置都比较接近,但是网上对小米的评价普遍比较高,于是又在上面的列表里筛选出了所有的小米手机,得到下面7款 用Python数据分析选购手机,双十一刚过你选对了嘛

这里就变成了红米Note5和小米6X的PK了。价格上,两者不差上下。配置方面,网上查到红米Note5的cpu是骁龙636的(上面的表格里缺少红米Note5的cpu型号),相比小米6X的骁龙660,636虽然性能上不如660,但更省电,而且考虑到红米Note5 4000毫安的超大容量电池,最后决定了购买红米Note 5这一款。作为一款千元机,骁龙636八核CPU、6G大内存、64G大存储、5.99英寸大视野全面屏、前置相机+后置双摄、超长的待机时间,这款手机大概算是千元机中的机皇了。

用Python数据分析选购手机,双十一刚过你选对了嘛

上一篇:三层架构的一点理解以及Dapper一对多查询


下一篇:axios的介绍及使用