opencv-python
opencv 不支持透明
R G B 设备独立空间
1.图像读取与显示
def red_deno(): image = cv.imread("D:/0.jpg") #注意符号 cv.imshow("input",image) cv.waitKey(0) cv.destroyAllWindows()
2.图像色彩空间转换
def color_space_demo(): #色彩空间 image = cv.imread("D:/0.jpg") # 注意符号 rgb,0-255 gray = cv.cvtColor(image,cv.COLOR_RGB2GRAY) #处理为灰度 hsv = cv.cvtColor(image,cv.COLOR_RGB2HSV) #处理hsv H 0 0-180 cv.imshow("gray",gray) cv.imshow("hsv",hsv) cv.waitKey(0) cv.destroyAllWindows()
3.图像对象的创建与读写
def mat_demo(): #色彩空间 image = cv.imread("D:/0.jpg") # 注意符号 rgb,0-255 print(image.shape) #(417, 500, 3) 高,宽,通道数 print(image) #图片就是一串数组 roi = image[60:100,60:200,:] #创建一个空白区域 blank = np.zeros_like(image) # blank[60:100,60:200] = image[60:100,60:200] #截取一个图片空间 blank = image #blank = np.copy(image) #直接原图拷贝过来 cv.imshow("image",image) cv.imshow("blank", blank) cv.imshow("roi", roi) cv.waitKey(0) cv.destroyAllWindows()
4.图片像素的读写操作
def pixel_demo(): #色彩空间 image = cv.imread("D:/0.jpg") # 注意符号 rgb,0-255 cv.imshow("input", image) #显示输入图片 h,w,c = image.shape for row in range (h): for col in range (w): r,g,b=image[row,col] image[row,col] = r-255,g-255,b-255 #rgb取反 cv.imshow("result",image) cv.imwrite("D:/result.png",image) #将输出后图片进行保留 cv.waitKey(0) cv.destroyAllWindows()
5.图像像素的算数操作
def math_demo(): #色彩空间 image = cv.imread("D:/0.jpg") # 注意符号 rgb,0-255 cv.imshow("input", image) #显示输入图片 h,w,c = image.shape blank = np.zeros_like(image) blank[:,:] = (8,8,8) cv.imshow("blank",blank) # result = cv.add(image,blank) #增加对比度,加法运算 result = cv.subtract(image, blank) #减法运算 result = cv.divide(image, blank) #除法运算 result = cv.multiply(image, blank) #乘法运算 cv.imshow("result",result) cv.waitKey(0) cv.destroyAllWindows()
6.TrackBar/滚动条操作演示-调整图像亮度
def nothing(x): print(x) def adjust_light_demo(): image = cv.imread("D:/0.jpg") # 注意符号 rgb,0-255 cv.namedWindow("input", cv.WINDOW_AUTOSIZE) cv.createTrackbar("light","input",0,100,nothing) cv.imshow("input",image) blank = np.zeros_like(image) while True: pos = cv.getTrackbarPos("light","input") blank[:,:] = (pos,pos,pos) # cv.imshow("blank",blank) # result = cv.add(image,blank) #增加对比度,加法运算 result = cv.subtract(image, blank) #减法运算 # result = cv.divide(image, blank) #除法运算 # result = cv.multiply(image, blank) #乘法运算 cv.imshow("result",result) c=cv.waitKey(1) if c == 27: break cv.destroyAllWindows()
7.TrackBar/滚动条操作演示-参数传递与调整亮度与对比度
def adjust_contrst_demo(): image = cv.imread("D:/0.jpg") # 注意符号 rgb,0-255 cv.namedWindow("input", cv.WINDOW_AUTOSIZE) cv.createTrackbar("light","input",0,100,nothing) cv.createTrackbar("contrst", "input", 100, 200, nothing) cv.imshow("input",image) blank = np.zeros_like(image) while True: light = cv.getTrackbarPos("light","input") contrst = cv.getTrackbarPos("contrst", "input")/100 print("light",light,"contrst",contrst) # blank[:,:] = (light,light,light) result = cv.addWeighted(image,contrst,blank,0.5,light) cv.imshow("result",result) c=cv.waitKey(1) if c == 27: break cv.destroyAllWindows()
8.键盘响应操作
def keny_demo(): #键盘响应 image = cv.imread("D:/0.jpg") # 注意符号 rgb,0-255 cv.namedWindow("input", cv.WINDOW_AUTOSIZE) cv.imshow("input",image) while True: c = cv.waitKey(1) #停顿一毫秒 if c ==49: #1 gray = cv.cvtColor(image,cv.COLOR_RGB2GRAY) cv.imshow("result",gray) if c == 50: #2 hsv = cv.cvtColor(image,cv.COLOR_RGB2HSV) cv.imshow("result", hsv) if c == 51: #3 invert = cv.bitwise_not(image) cv.imshow("result", invert) # if c == 52: # invert = cv.bitwise_and(image) # cv.imshow("result", invert) if c == 27: break cv.destroyAllWindows()
9.opencv自带颜色表操作
def color_table_demo(): #键盘响应 colormap = [ cv.COLORMAP_AUTUMN, cv.COLORMAP_BONE, cv.COLORMAP_JET, cv.COLORMAP_WINTER, cv.COLORMAP_RAINBOW, cv.COLORMAP_OCEAN, cv.COLORMAP_SUMMER, cv.COLORMAP_SPRING, cv.COLORMAP_COOL, cv.COLORMAP_HSV, cv.COLORMAP_PINK, cv.COLORMAP_HOT] image = cv.imread("D:/0.jpg") # 注意符号 rgb,0-255 cv.namedWindow("input", cv.WINDOW_AUTOSIZE) cv.imshow("input",image) index = 0 while True: dst = cv.applyColorMap(image,colormap[index%12]) #取模12 index += 1 cv.imshow("color style",dst) c = cv.waitKey(1000) # 停顿一毫秒 if c == 27: break cv.destroyAllWindows()
![1633174791952](C:\Users\asus\AppData\Roaming\Typora\typora-user-images\1633174791952.png)
10.图像像素的逻辑操作
def bitwise_demo(): b1 = np.zeros((400,500,3),dtype = np.uint8) b1[:,:] = (0,255,0) b2 = np.zeros((400, 500,3), dtype=np.uint8) b2[:, :] = (255,0,255) cv.imshow("b1", b1) cv.imshow("b2", b2) dst1 = cv.bitwise_and(b1,b2) dst2 = cv.bitwise_or(b1,b2) dst3 = cv.bitwise_not(b1,b2) cv.imshow("bitwise_and", dst1) cv.imshow("bitwise_or", dst2) cv.imshow("bitwise_not", dst3) cv.waitKey(0) cv.destroyAllWindows()
11.通道分离与合并
def channels_split_demo(): b1 = cv.imread("D:/0.jpg") print(b1.shape) cv.imshow("input", b1) cv.imshow("b2", b1[:,:,-1]) #[:,:,-1]和[:,:,3] 倒数第一和正数第三 mv = cv.split(b1) #分离 mv[0][:,:] = 255 result = cv.merge(mv) #合并 cv.imshow("result",result) print(len(mv)) cv.waitKey(0) cv.destroyAllWindows()
12.图像色彩空间转换
def color_space_demo(): b1 = cv.imread("D:/245.jpg") print(b1.shape) cv.imshow("input", b1) hsv = cv.cvtColor(b1,cv.COLOR_RGB2HSV) cv.imshow("hsv",hsv) mask = cv.inRange(hsv,(35,43,46),(77,255,255)) cv.bitwise_not(mask,mask) result = cv.bitwise_and(b1,b1,mask=mask) cv.imshow("result",result) cv.waitKey(0) cv.destroyAllWindows()
hsv过滤表
13.图像的像素统计
def pixel_means_demo(): b1 = cv.imread("D:/245.jpg") print(b1.shape) cv.imshow("input", b1) print(np.max(b1[:,:,2])) means,dev = cv.meanStdDev(b1) print(means,"dev",dev) cv.waitKey(0) cv.destroyAllWindows()
结果为像素 ,通道数
最大值
r g b 三个均值
r g b 三个方差
14.图像几何形状绘制
def dawing_demo(): # b1 = np.zeros((512,512,3),dtype = np.uint8) b1 = cv.imread("D:/245.jpg") b2 = np.copy(b1) cv.rectangle(b1,(50,50),(400,400),(0,0,255),4,8,0) #绘制矩形 # cv.circle(b1,(200,200),100,(255,2,255),-1,8,0) #绘制圆形 # cv.line(b1,(50,50),(400,400),(0,0,255),4,8,0) #绘制直线 cv.putText(b1,"99%face",(50,50),cv.FONT_HERSHEY_SIMPLEX,1.0,(0,255,254),2,8,0) # b1[:,:,:] = 0 #清除绘图痕迹 # b1 = b2 #方法二 先复制一个空白图再调用 cv.imshow("result",b1) # b1 = cv.imread("D:/245.jpg") cv.waitKey(0) cv.destroyAllWindows()
15.随机数和随机颜色
def random_color_demo(): b1 = np.zeros((512,512,3),dtype = np.uint8) while True: xx = np.random.randint(0,512,2,dtype = np.int) yy = np.random.randint(0,512,2,dtype = np.int) bgr = np.random.randint(0,255,3,dtype = np.int32) print(bgr[0],bgr[1],bgr[2],xx[0],yy[0],xx[1],yy[1]) cv.line(b1,(xx[0],yy[0]),(xx[1],yy[1]),(np.int(bgr[0]),np.int(bgr[1]),np.int(bgr[2])),8,8,0) #绘制直线 cv.imshow("result",b1) c = cv.waitKey() if c == 27: break cv.destroyAllWindows()
16.多边形填充与绘制
def polyline_drawing_demo(): canvas = np.zeros((512,512,3),dtype = np.uint8) pts = np.array([[100,100],[350,100],[450,280],[320,320],[80,400]],dtype=np.int32) #这是一个数组 cv.fillPoly(canvas,[pts],(255,0,0),8,0) #填充 cv.polylines(canvas,[pts],True,(0,255,0),2,8,0) #绘制外框 # cv.drawContours(canvas,[pts],-1,(255,0,0),-1) #填充加绘制 cv.imshow("result", canvas) cv.waitKey(0) cv.destroyAllWindows()
17.鼠标操作与响应
b1 = cv.imread("D:/245.jpg") #np.zeros((512,512,3),dtype = np.uint8) b2 = np.copy(b1) x1 = -1 x2 = -1 y1 = -1 y2 = -1 def mouse_drawing(event,x,y,flags,param): global x1,y1,x2,y2 if event == cv.EVENT_LBUTTONDOWN: x1 = x y1 = y if event == cv.EVENT_MOUSEMOVE: if x1<0 or y1<0: return x2 = x y2 = y dx = x2 - x1 dy = y2 - y1 if dx > 0 and dy > 0: b1[:,:,:] = b2 cv.rectangle(b1,(x1,y1),(x2,y2),(0,255,0),2,8,0) if event == cv.EVENT_LBUTTONUP: if x1<0 or y1<0: return x2 = x y2 = y dx = x2 - x1 dy = y2 - y1 if dx > 0 and dy > 0: b1[:,:,:] = b2 cv.rectangle(b1,(x1,y1),(x2,y2),(0,255,0),2,8,0) x1 = -1 x2 = -1 y1 = -1 y2 = -1 def mouse_demo(): cv.namedWindow("mouse_demo",cv.WINDOW_AUTOSIZE) cv.setMouseCallback("mouse_demo",mouse_drawing) while True: cv.imshow("mouse_demo", b1) c = cv.waitKey(10) if c == 27: break cv.destroyAllWindows()
18.图像像素类型转换与归一化
def norm_demo(): image = cv.imread("D:/245.jpg") cv.namedWindow("mouse_demo",cv.WINDOW_AUTOSIZE) result = np.zeros_like(np.float32(image)) cv.normalize(np.float32(image),result,0,1,cv.NORM_MINMAX,dtype=cv.CV_32F) cv.imshow("mouse_demo", np.uint8(image*255)) # print(image/255) c = cv.waitKey(0) cv.destroyAllWindows()
19.图像放缩与插值
def resize_demo(): image = cv.imread("D:/245.jpg") h, w, c = image.shape cv.namedWindow("resize_demo",cv.WINDOW_AUTOSIZE) # dst = cv.resize(image,(w//2,h//2),interpolation=cv.INTER_BITS2) #只能对整数操作 dst = cv.resize(image, (0,0),fx = 0.75,fy=0.75, interpolation=cv.INTER_BITS2) #可对任意大小操作 cv.imshow("resize_demo()",dst) c = cv.waitKey(0) cv.destroyAllWindows()
20.图像翻转
def flip_demo(): image = cv.imread("D:/245.jpg") cv.imshow("input", image) cv.namedWindow("resize_demo",cv.WINDOW_AUTOSIZE) dst = cv.flip(image,-1) cv.imshow("flip_demo()",dst) c = cv.waitKey(0) cv.destroyAllWindows()
21.图像旋转
def rotate_demo(): src = cv.imread("D:/245.jpg") cv.imshow("input", src) h, w, c = src.shape # 定义矩阵 M = np.zeros(( 2, 3), dtype=np.float32) # 定义角度 alpha = np.cos(np.pi / 4.0) beta = np.sin(np.pi / 4.0) print( "alpha : ", alpha) # 初始化矩阵 M[ 0, 0] = alpha M[ 1, 1] = alpha M[ 0, 1] = beta M[ 1, 0] = -beta cx = w / 2 cy = h / 2 tx = ( 1-alpha)*cx - beta*cy ty = beta*cx + ( 1-alpha)*cy M[ 0, 2] = tx M[ 1, 2] = ty # change with full size bound_w = int(h * np.abs(beta) + w * np.abs(alpha)) bound_h = int(h * np.abs(alpha) + w * np.abs(beta)) # 添加中心位置迁移 M[ 0, 2] += bound_w / 2- cx M[ 1, 2] += bound_h / 2- cy dst = cv.warpAffine(src, M, (bound_w, bound_h)) cv.imshow( "rotate without cropping", dst) c = cv.waitKey(0) cv.destroyAllWindows()
22.视频文件和摄像头使用
def video_demo(): cap = cv.VideoCapture(0) #读取摄像头编号为0 # cap = cv.VideoCapture("C:/Users/asus/哈哈哈哈.mp4") w = cap.get(cv.CAP_PROP_FRAME_WIDTH) h = cap.get(cv.CAP_PROP_FRAME_HEIGHT) fps = cap.get(cv.CAP_PROP_FPS) print(w, h, fps) while True: ret ,frame = cap.read() frame = cv.flip(frame,1) #读取视频时可不用 if ret is not True: break cv.imshow("frame",frame) c = cv.waitKey(10) if c == 27: break cv.destroyAllWindows()
23.视频处理与保存
def video_demo(): cap = cv.VideoCapture("C:/Users/asus/哈哈哈哈.mp4") w = cap.get(cv.CAP_PROP_FRAME_WIDTH) h = cap.get(cv.CAP_PROP_FRAME_HEIGHT) fps = cap.get(cv.CAP_PROP_FPS) out = cv.VideoWriter("D:TEST.mp4",cv.VideoWriter.fourcc('P','I','M','1'),fps(np.int(w),np.int(h)),True) print(w, h, fps) while True: ret ,frame = cap.read() frame = cv.flip(frame,1) #读取视频时可不用 if ret is not True: break cv.imshow("frame",frame) c = cv.waitKey(10) if c == 27: break cv.destroyAllWindows() out.release()
24.图像直方图
def image_hist(): image = cv.imread("D:/245.jpg") cv.imshow( "input", image) color = ('blue','green','red') for i,color in enumerate(color): hist = cv.calcHist([image],[i],None,[256],[0,256]) print(hist) plt.plot(hist,color = color) plt.xlim(0,256) plt.show() cv.waitKey(0) cv.destroyAllWindows()
25.二维直方图
def image_hist2d(): image = cv.imread("D:/245.jpg") hsv = cv.cvtColor(image,cv.COLOR_RGB2HSV) hist = cv.calcHist([hsv], [0,1], None, [64,64], [0,180,0, 256]) dst = cv.resize(hist,(800,800)) cv.normalize(dst,dst,0,255,cv.NORM_MINMAX) cv.imshow( "input", image) dst = cv.applyColorMap(np.uint8(dst),cv.COLORMAP_JET) cv.imshow("hist", dst) plt.imshow(hist,interpolation='nearest') plt.title('2D Histogram') plt.show() cv.waitKey(0) cv.destroyAllWindows()
26.直方图均衡化
def equal_hist2d(): image = cv.imread("D:/245.jpg",cv.IMREAD_GRAYSCALE) cv.imshow("input",image) result = cv.equalizeHist(image) cv.imshow("result",result) cv.waitKey(0) cv.destroyAllWindows()
27.图像卷积操作
均值卷积和高斯卷积(权重系数不同)
def conv_demo(): image = cv.imread("D:/245.jpg") cv.imshow("input",image) result = cv.blur(image,(5,5)) cv.imshow("result",result) cv.waitKey(0) cv.destroyAllWindows()
28.高斯模糊
def GaussianBlur_demo(): image = cv.imread("D:/245.jpg") cv.imshow("input",image) result = cv.GaussianBlur(image,(3,3),5) #必须为奇数 cv.imshow("result",result) cv.waitKey(0) cv.destroyAllWindows()
29.高斯双边模糊
def bifilter_demo(): image = cv.imread("D:/012.png") cv.imshow("input",image) result = cv.bilateralFilter(image,0,100,10) cv.imshow("result",result) cv.waitKey(0) cv.destroyAllWindows()