Every non-negative integer N
has a binary representation. For example, 5
can be represented as "101"
in binary, 11
as "1011"
in binary, and so on. Note that except for N = 0
, there are no leading zeroes in any binary representation.
The complement of a binary representation is the number in binary you get when changing every 1
to a 0
and 0
to a 1
. For example, the complement of "101"
in binary is "010"
in binary.
For a given number N
in base-10, return the complement of it's binary representation as a base-10 integer.
Example 1:
Input: 5
Output: 2
Explanation: 5 is "101" in binary, with complement "010" in binary, which is 2 in base-10.
Example 2:
Input: 7
Output: 0
Explanation: 7 is "111" in binary, with complement "000" in binary, which is 0 in base-10.
Example 3:
Input: 10
Output: 5
Explanation: 10 is "1010" in binary, with complement "0101" in binary, which is 5 in base-10.
Note:
0 <= N < 10^9
- This question is the same as 476: https://leetcode.com/problems/number-complement/
这道题让求十进制整数的补码,我们都知道补码是二进制中的一个概念,就是每一位上的数都跟原数是相反的,这里所谓的十进制的补码,其实就是先转为二进制,再求补码,再转回十进制数。既然是求补码,最直接的方法就是从低到高,一位一位的取出来,然后进行取反。对于一个十进制数取其二进制数的最低位的方法,就是‘与’上一个1,然后取反,取反就是‘异或’上一个1,接着就是左移对应的位数,可以用一个变量i来统计当前处理到第几位了,然后直接左移i位就行了。之后N要右移一位,i自增1即可,参见代码如下:
解法一:
class Solution {
public:
int bitwiseComplement(int N) {
if (N == 0) return 1;
int res = 0, i = 0;
while (N > 0) {
res += ((N & 1) ^ 1) << i;
N >>= 1;
++i;
}
return res;
}
};
我们也可以使用一个 for 循环,这样可以写的更简洁一些,思路都是完全一样的,参见代码如下:
解法二:
class Solution {
public:
int bitwiseComplement(int N) {
if (N == 0) return 1;
int res = 0, i = 0;
for (int i = 0; N > 0; ++i, N >>= 1) {
res += ((N & 1) ^ 1) << i;
}
return res;
}
};
下面的这种解法用到了一些补码的性质,那就是一个二进制数加上其补码,则每个位置上都会变成1,且位数和原数相同。这样的话我们就可以先求出这个各位上全是1的数,然后再做减法,就可以得到补码了,参见代码如下:
解法三:
class Solution {
public:
int bitwiseComplement(int N) {
int X = 1;
while (N > X) X = X * 2 + 1;
return X - N;
}
};
由于‘异或’的特点,在求得了各位上都是1的数字后,直接‘异或’上原数,也可以得到补码,参见代码如下:
解法四:
class Solution {
public:
int bitwiseComplement(int N) {
int X = 1;
while (N > X) X = X * 2 + 1;
return X ^ N;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/1009
参考资料:
https://leetcode.com/problems/complement-of-base-10-integer/
LeetCode All in One 题目讲解汇总(持续更新中...)