hdu2602 Bone Collector(01背包) 2016-05-24 15:37 57人阅读 评论(0) 收藏

Bone Collector

Problem Description
Many years ago , in Teddy’s hometown there was a man who was called “Bone Collector”. This man like to collect varies of bones , such as dog’s , cow’s , also he went to the grave …

The bone collector had a big bag with a volume of V ,and along his trip of collecting there are a lot of bones , obviously , different bone has different value and different volume, now given the each bone’s value along his trip , can you calculate out the
maximum of the total value the bone collector can get ?

hdu2602 Bone Collector(01背包)                                                                                            2016-05-24 15:37             57人阅读              评论(0)              收藏

 
Input
The first line contain a integer T , the number of cases.

Followed by T cases , each case three lines , the first line contain two integer N , V, (N <= 1000 , V <= 1000 )representing the number of bones and the volume of his bag. And the second line contain N integers representing the value of each bone. The third
line contain N integers representing the volume of each bone.
 
Output
One integer per line representing the maximum of the total value (this number will be less than 231).
 
Sample Input
1
5 10
1 2 3 4 5
5 4 3 2 1
 
Sample Output
14
 
——————————————————————————————————————————————————————————————————————
最最最最最最最经典的01背包问题,告诉你物品数量和背包容量及各件物品的质量和价值,求最大价值
我们来考虑第i件物品的决策情况
若容量够可以取,则考虑取了之后最大价值和不取的最大价值何者大,即dp[i][j]=max(dp[i][j-1],dp[i-weight[j]][j-1]+val[j]);

若容量不够不能取,则dp[i][j]=dp[i][j-1];

代码入下:


#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int dp[1005][1005];
int main()
{
int weight[1005],val[1005],sum,n,o;
while(~scanf("%d",&o))
{
while(o--)
{
scanf(" %d %d",&n,&sum);
for(int i=1;i<=n;i++)
scanf("%d",&val[i]);
for(int i=1;i<=n;i++)
scanf("%d",&weight[i]);
memset(dp,0,sizeof(dp));
for(int i=0;i<=sum;i++)
for(int j=1;j<=n;j++)
{
if(dp[i][j]+weight[j]<=i)
dp[i][j]=max(dp[i][j-1],dp[i-weight[j]][j-1]+val[j]);
else
dp[i][j]=dp[i][j-1];
}
printf("%d\n",dp[sum][n]); }
}
return 0;
}



上一篇:TFIDF<细读>


下一篇:Python——rrdtool模块的安装